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Fig. 1. Deforming Hemisphere. A free-vibrating hemispherical soap bubble (with a radius of 0.5 and the base fixed) is simulated with our method. Left: With
the initial perturbation on physical attributes (thickness and surfactant concentration) and geometries, the bubble surface exhibits intricate surface flows
during simulation and eventually reach to a equilibrium state, in which the soap bubble gradually thickens from top to bottom, with the upper end displaying
a golden hue and the lower end exhibiting a green shade. The four stages of the simulation are sequentially represented by the four figures arranged as
top-left, top-right, bottom-left, and bottom-right. Right: multiscale vortical structures captured at two snapshots during the simulation.

This paper introduces a novel physically-based vortex fluid model for films,
aimed at accurately simulating cascading vortical structures on deforming
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thin films. Central to our approach is a novel mechanism decomposing the
film’s tangential velocity into circulation and dilatation components. These
components are then evolved using a hybrid particle-mesh method, enabling
the effective reconstruction of three-dimensional tangential velocities and
seamlessly integrating surfactant and thickness dynamics into a unified
framework. By coupling with its normal component and surface-tension
model, our method is particularly adept at depicting complex interactions
between in-plane vortices and out-of-plane physical phenomena, such as
gravity, surfactant dynamics, and solid boundary, leading to highly realistic
simulations of complex thin-film dynamics, achieving an unprecedented
level of vortical details and physical realism.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Fluid simulation, thin film simulation,
vortex particle method
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1 INTRODUCTION
Thin-film fluid simulation has witnessed significant advancements
in computer graphics over recent years, with extensive research
efforts dedicated to capturing the complex bubble dynamics and its
color evolution by establishing thin-film fluid dynamics solvers
based on first principles. This involves solving the reduced 3D
Navier-Stokes equations discretized on thin-film geometries (e.g.,
meshes [Ishida et al. 2020] or particles [Deng et al. 2022; Wang
et al. 2021]) to capture both in-plane flow details and out-of-plane
deformation, along with the topological evolution in 3D space. A
particularly captivating aspect of thin-film fluid dynamics is its cas-
cade of vortices on its deforming surface, intertwined with the soap
colors created by its evolving thickness, all of which are influenced
by and interact with a complex three-dimensional physical envi-
ronment. These interactions are multifaceted, including forces such
as gravity in its simplest form, Marangoni force with surfactant
dynamics, breeze force, heat convection, as well as the effects of
solid boundaries and moving objects on the thin-film surface. A
prominent outcome of these complex interactions is the hierarchical
vortex dynamics occurring in the tangential space of an evolving
film or bubble. Accurately simulating the interaction mechanisms
between physical elements from the three-dimensional world and
the vortex dynamics constrained in an embedded codimension-one
space, is key to achieving realistic vortex dynmics of thin films.
Despite rapid advances in first-principle soap film solvers, accu-

rately capturing and evolving cascading vortices of varying scales
on deforming thin films remains challenging. A major difficulty is
the lack of a direct representation to capture the structures of these
multi-scale vortices on a codimension-one manifold and a physically
accurate model to evolve their dynamics on the deforming thin film
by interacting with the 3D environment. Extensive literature exists
on vortex methods in computational physics and computer graphics,
such as particles [Selle et al. 2005], filaments [Weißmann and Pinkall
2010], sheets [Pfaff et al. 2012], or their hybrids [Barnat and Pollard
2012; Xiong et al. 2021], which are mainly designed for volumetric
flows and not suited for thin film dynamics. In computer graph-
ics, researchers have developed simulation algorithms based on
differential geometry to create circulation-preserving incompress-
ible flow solvers on curved surfaces (e.g., see [Elcott et al. 2007]).
However, these approaches are often seen more as a projected 2D
Navier-Stokes solver discretized on a manifold surface, rather than
as comprehensive 3D thin-film fluid solvers capable of handling
the co-evolution of physical ingredients like surfactant, thickness,
film deformation, and various external forces. Consequently, most
first-principle thin-film solvers (e.g., see [Ishida et al. 2020]) rely on
velocity-form models to simulate interactions between the 3D fluid
velocities defined on evolving thin films and various physical inter-
actions surrounding them. The inherent inability of this approach
to effectively represent, capture, and evolve vortical structures, com-
pared to their vortex-oriented counterparts for volumetric fluid
simulations, poses an exciting new challenge in achieving accurate
and visually captivating vortex-driven film dynamics.
We propose a physically-based vortex fluid model for thin films,

focusing on generating and evolving cascading vortical structures
due to interactions between turbulent fluid flow on a deforming film

and physical forces from the three-dimensional world. Central to
our method is a novel representation of the film’s tangential velocity,
which we decompose into circulation and dilatation components us-
ing Helmholtz-Hodge decomposition on 2-manifolds. Our approach
employs a hybrid particle-mesh representation to evolve these dy-
namics. Initially, we employ a set of moving particles in tangential
space to transport both circulation and dilatation. Subsequently, we
transfer these properties onto a triangle mesh to compute the effects
of various forces on soap films. The three-dimensional tangential
velocity can be effectively reconstructed from the co-evolved cir-
culation and dilatation components by solving two joint Poisson
equations. We further couple the dilatation variable with surfactant
and thickness dynamics, along with the film’s normal dynamics
driven by surface tension, resulting in a fully integrated thin film
system. This system is particularly adept at characterizing the in-
teraction between in-plane vortices and out-of-plane physics, such
as various forces and solid interactions from 3D environments. A
key innovation is our dilatation dynamics model, enabling various
vortex-environment interactions and allowing for the simulation of
complex 3D force-driven thin-film phenomena, such as Newton’s
interference fringes and Rayleigh-Taylor instability, all under a tan-
gential vortex dynamics framework, a feat previously unattainable
with circulation-preserving models.

The main contributions of our approach are summarized as:

• the first physically-based vortex fluid model for generating
and evolving cascading vortical structures on deforming thin
films

• a novel representation of film’s tangential velocity based on
circulation and dilatation

• a vortex particle-on-meshmethod for dynamic interface track-
ing and the intricate surface flow simulation

2 RELATED WORK
Thin film simulation. The dynamics of thin films (membrane with

boundaries and soap bubbles), often relies on a dimension-reduced
form of the Navier-Stokes equation [Chomaz 2001; Couder et al.
1989]. This study involves two primary aspects: the evolution of
thin film geometries and the interfacial flow within them. In the
context of geometric evolution, researchers have developed algo-
rithms for simulating thin films using various representations, such
as level-sets [Zheng et al. 2006], meshes [Zhu et al. 2014], particles
[Wang et al. 2021], and have even extended it to scenarios involv-
ing multiple bubbles with Plateau borders [Da et al. 2015; Ishida
et al. 2017; Kim et al. 2007; Qu et al. 2023; Saye and Sethian 2013].
However, to achieve the creation of visually striking iridescent color
patterns on thin films, it becomes essential to simulate the thickness
evolution driven by interfacial flows. In response, Hill and Hender-
son [2016]; Huang et al. [2020] have proposed methods to simulate
intricate interfacial flows on static spheres. Furthermore, Deng et al.
[2022]; Ishida et al. [2020]; Wang et al. [2021] extended their work
to simulated tangential flows on deforming film geometries using
velocity-based formulations. To improve tangential flow accuracy,
we reformulate the Navier-Stokes equation on the manifold using
circulation and dilatation as the primary variables.
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Fig. 2. Stick. A stick sweep across the film and introduces a velocity disturbance at the interface between the fluid and the solid, thereby spreading fascinating
turbulent vortices in the area where the stick is drawn (Bottom). Top: The turbulence details in the three black-framed region.

Vortex particle method. The vortex particle method servers as
an effective solution to mitigate the numerical viscosity associated
with the traditional semi-Lagrangian advection scheme [Stam 1999].
This method has shown remarkable success in preserving vortex
structures within turbulent flows [Park and Kim 2005] and achiev-
ing vorticity confinement in Eulerian grid fluids [Pfaff et al. 2009;
Selle et al. 2005]. While the vortex particle method is known for its
simplicity, it can introduce numerical accuracy challenges attribut-
able to random particle distribution. In particular, within regions
featuring intricate vortex structures, the random distribution of
particles may struggle to faithfully represent the underlying fluid
behavior. To overcome this limitation, various structured vortex
geometries have been introduced to provide more precise represen-
tations of vorticities. These include vortex filaments [Barnat and
Pollard 2012; Ishida et al. 2022; Weißmann and Pinkall 2010], vortex
sheets [Brochu et al. 2012; Pfaff et al. 2012], vortex segments [Xiong
et al. 2021; Zhang and Bridson 2014], etc. It is important to empha-
size that these methods primarily focus on volumetric flows. Da
et al. [2015] applied the vortex sheet method to simulate bubbles.
However, their method specifically targets the geometric deforma-
tion of bubbles and does not address the interfacial flow, which is
the primary focus of our research.

Mesh based method. To simulate interfacial flows on triangle
meshes, Shi and Yu [2004] extended the stable fluids approach pro-
posed initially by Stam [1999] to accommodate curved surfaces
through the incorporation of mesh-based differential operators. De-
spite its simplicity, this method inherits numerical viscosity issues,
particularly in the form of numerical diffusion of vorticity. For a

more systematic treatment of integral and differential operations
on simplicial manifolds, Discrete Exterior Calculus (DEC) [Crane
et al. 2013; Wang et al. 2023] emerges as a robust framework. Based
upon DEC, Elcott et al. [2007] developed a circulation-preserving
method to simulate fluids on simplicial meshes, which effectively
eliminates numerical diffusion of vorticities. Azencot et al. [2014]
further improved their method by directly preserving vorticities
and avoiding the explicit computation of flow lines. However, it is
important to highlight that these methods primarily address the 2D
Navier-Stokes equations on the manifold and do not specifically
target the evolution of tangential velocity within the thin film. In
contrast, Ishida et al. [2020] explored the thickness evolution of
bubbles using triangle meshes, but their method is rooted in the
velocity formulation akin to that of Shi and Yu [2004], which suffers
from significant numerical damping for vorticities.

Hybrid Lagrangian/Eulerian Methods. The traditional Particle-In-
Cell (PIC) methods [Foster and Metaxas 1996; Harlow 1962], which
utilize Lagrangian particles and Eulerian grids, have proven effective
for realistically simulating fluids and are widely used in computer
graphics. However, their significant inherent dissipation makes
them less suitable for simulating turbulent flows. To mitigate this
issue, the Fluid Implicit Particle (FLIP) method [Brackbill et al. 1988;
Zhu and Bridson 2005] was developed, which reduces dissipation
by transferring velocity increments during the grid-to-particle pro-
cess. PIC/FLIP methods [Batty et al. 2007; Fu et al. 2017; Jiang et al.
2015; Qu et al. 2022] commonly employ MAC-Grids, where pressure
projection is used to maintain fluid incompressibility, though some
studies have opted for an unstructured mesh as the background
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Fig. 3. Rayleigh-Taylor Instability. The dynamic development of finger-like patterns at the interface of two fluid layers with different density and surfactant
concentrations, replicating observations from both real-world experiments and simulations.

grid. Matsumoto and Kawata [1990] introduced a PIC method on
triangular meshes for simulating the movement of charged particles
in magnetostatic fields, which offers better management of curved
boundaries. Ando et al. [2013] utilized a FLIP method based on
tetrahedron mesh discretization to efficiently simulate liquids with
high spatial adaptivity. Moreover, Ando et al. [2015] implemented
a stream function to enforce incompressibility, without relying on
pressure projection. Inspired by these developments, we propose a
new PIC/FLIP simulation scheme based on a triangular mesh. This
approach involves simulating the evolution of the stream function
and dilation to achieve a physically realistic simulation of soap
films.

3 PHYSICAL MODEL
In this section, we introduce our thin-film model with a primary
focus on preserving vortex structure by enhancing tangential flow
evolution. Following this, we integrate these improvements with
normal evolution, resulting in a comprehensive dynamic model.
Our approach begins with the 3D Navier-Stokes equations, em-

ploying a leading-order approximation under the lubrication as-
sumption, as demonstrated by Huang et al. [2020]. Additionally, we
adopt the tangential-normal decoupling method which was pro-
posed by Deng et al. [2022]; Ishida et al. [2020]. While building on
these established strategies, the distinctive contribution of this work
lies in the treatment of the tangential equation.

𝐷u⊤

𝐷𝑡
= −2𝑅𝑇

𝜌𝜂
∇𝑠Γ + 𝜈∇2

𝑠u
⊤ + 1

𝜌
f⊤ext, (1)

where u⊤, f⊤ext represents the tangential fluid velocity and external
force (only gravity considered), and 𝑅, 𝑇 , 𝜌 , 𝜂, Γ and 𝜈 denotes
the ideal gas constant, temperature, fluid density, film thickness,
surfactant concentration and kinematic viscosity respectively.
The accurate solution of Eq. (1) is the key to recreating soap

films’ turbulent flows and intricate visual details, and a demanding
numerical challenge that have been tackled with grid-based [Huang
et al. 2020], mesh-based [Ishida et al. 2020], and particle-based [Deng
et al. 2022] methods. Nevertheless, these existing methods are all
velocity-based, whose susceptibility to numerical viscosity renders

them suboptimal in resolving soap film dynamics which is largely
inviscid and vortical due to the thin geometries.

3.1 Circulation
In face of this conundrum, one promising approach is to reformulate
the velocity-based Eq. (1) into a vorticity-based form which tracks
𝝎 = ∇ × 𝒖 as its primary variable, as inspired by the rich literature
of vortex methods in computer graphics [Azencot et al. 2014; Barnat
and Pollard 2012; Elcott et al. 2007; Pfaff et al. 2012; Selle et al. 2005;
Weißmann and Pinkall 2010; Xiong et al. 2021]. However, despite
tracking the vorticity 𝝎 can naturally preserve vortex structures
and resist numerical diffusion, it is not straightforward to directly
apply the curl operator, as defined in three-dimensional space, to
our thin-film context.
In order to leverage the advantages in maintaining vorticity 𝝎

without the need for a manifold curl operator, we employ a third
variable which is the circulation Ω [Cottet et al. 2000; Elcott et al.
2007]. The introduction of Ω effectively reconciles this conundrum,
because on one hand, Ω relates directly to 𝝎 as its integral based
on Stokes’ Theorem, so modeling the evolution of circulation con-
tributes to effectively maintaining vorticity. On the other hand, Ω
relates to velocity 𝒖 as its line integral around closed paths, so that
the curl operator is not needed. Particularly:

Ω =

∮
𝜑

u · 𝑑l =
∬

𝑆𝜑

(∇𝑠 · 𝐽u⊤) · 𝑑𝑆, (2)

where the operator 𝐽 rotates the vector by 𝜋/2 in the order followed
by the crawling line integral and 𝑆𝜑 denotes the area enclosed by
the closed curve 𝜑 .
Having established Ω as our primary tracked variable, the next

step is to derive its governing equations by combining Eq. (1) and
Eq. (2). Given that the soap film is significantly thin compared to the
other dimensions, it is reasonable to assumed that the closed loop
predominantly aligns with the tangential direction of the film and
the circulation is primarily determined by the tangential velocity u⊤.
Therefore, the evolution equation for the circulation Ω is derived as
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follows:
𝐷Ω

𝐷𝑡
=

∮
𝜑

𝐷u
𝐷𝑡

· 𝑑l +
∮
𝜑

u · 𝐷 (𝑑l)
𝐷𝑡

(3)

= −2𝑅𝑇
𝜌

∮
𝜑

∇𝑠Γ
𝜂

· 𝑑l + 𝜈∇2
𝑠Ω. (4)

The second term of Eq. (3) equals zero according to Cottet et al.
[2000]. Notably, in the absence of viscosity and surfactant con-
centration gradients, Eq. (4) is consistent with Kelvin’s circulation
theorem. Additionally, the closed loop integral of gravity in the first
term of Eq. (3) equals to 0 as well.

3.2 Dilatation
Tracking the circulation Ω in place of velocity u allows us to effec-
tively isolate and capture the fluid’s rotational motion, but having
Ω alone is not enough for reconstructing the full velocity field u. To
see this, consider the Helmholtz-Hodge decomposition theorem on
a 2-manifold embedded in R3 [Azencot et al. 2014; Bhatia et al. 2013;
Elcott et al. 2007; Shi and Yu 2004] which states that the tangential
velocity field u⊤ can be expressed as:

u⊤ = ∇𝑠Φ + 𝐽∇𝑠Ψ + h, (5)
where ∇𝑠Ψ and 𝐽∇𝑠Φ are the surface gradient and curl of two scalar
potentials, and h is the harmonic component of the velocity field. In
particular, both ∇𝑠Φ and h are curl-free components which conse-
quently do not contribute to the circulation Ω. As a result, beyond
maintaining Ω, additional information is needed for recovering the
curl-free components ∇𝑠Φ and h. In this paper, under the assump-
tion of a simply-connected domain such as a soap film, we disregard
the dynamics of the harmonic component h. However, Yin et al.
[2023] have theoretically discussed that h cannot be ignored for
surfaces with more complex boundary conditions.
Now the only unmodeled component lies in the divergent field

∇𝑠Φ. We note that such a component is non-zero despite how we
model incompressible fluid, since it behaves like a compressible
medium when observed from the tangential domain due to the abil-
ity to thicken and thin. Our approach to calculate the divergent
component involves dealing with the velocity divergence, repre-
sented as dilatation 𝜗 = ∇𝑠 · u⊤ on a surface. We treat this quantity
as a separately monitored variable that evolves over time. We de-
rive its governing equation by computing the divergence of Eq. (1),
which results in:

𝜕𝜗

𝜕𝑡
= −∇𝑠 · (u · ∇𝑠u⊤) −

2𝑅𝑇
𝜌

∇𝑠 · (
∇𝑠Γ
𝜂

)

+ 1
𝜌
∇𝑠 · f⊤𝑒𝑥𝑡 + 𝜈∇2

𝑠𝜗 .
(6)

3.3 Velocity Reconstruction
At this point, we already have at our hand Ω =

∬
𝑆𝜑

(∇𝑠 · 𝐽u⊤) · 𝑑𝑆
which corresponds to the rotational component: 𝐽∇𝑠Ψ, along with
𝜗 = ∇𝑠 · u⊤ which corresponds to the irrotational component: ∇𝑠Φ.

The next step is to use both quantities to compute the scalar fields
Φ and Ψ by solving two Poisson equations:{

∇2
𝑠Φ = ∇𝑠 · u⊤ (7a)

∇2
𝑠Ψ = −∇𝑠 · 𝐽u⊤ , (7b)

Fig. 4. Our geometry discretization consists of Lagrangian particles P, a
triangle mesh T and its dual mesh D.

where∇2
𝑠 represents the surface Laplacian operator. The right-hand-

side of Eq. (7a) and Eq. (7b) can be simply derived by the relationships
∇𝑠 · u⊤ = 𝜗 and ∇𝑠 · 𝐽u⊤ = lim𝑆𝜑→0 Ω/𝑆𝜑 . It should be noted that
Eq. (7b) corresponds to the stream function formulation used by
Ando et al. [2015]; Azencot et al. [2014]; Elcott et al. [2007]. Solving
for Ψ and Φ in this way allows us to ultimately reconstruct the full
tangential velocity field according to Eq. (5).

3.4 Soap Film Dynamics Model
In summary, through exploiting the vortex formulation of the Navier
Stokes equations on manifold, we propose a novel soap film dynam-
ics model as:

𝐷u⊥

𝐷𝑡
=

1
𝜌ℎ

(−Δ𝑝 + 2(𝜎0 − 𝑅𝑇 Γ)𝐻 ) n + f⊥𝑒𝑥𝑡
𝜌

,

𝐷Ω

𝐷𝑡
= − 2𝑅𝑇

𝜌

∮
𝜑

∇𝑠Γ

𝜂
· 𝑑l + 𝜈∇2

𝑠Ω,

𝜕𝜗

𝜕𝑡
= −∇𝑠 · (u · ∇𝑠u⊤ ) −

2𝑅𝑇
𝜌

∇𝑠 · ( ∇𝑠Γ

𝜂
)

+ 1
𝜌
∇𝑠 · f⊤𝑒𝑥𝑡 + 𝜈∇2

𝑠𝜗 ,

∇2
𝑠Φ = 𝜗

∇2
𝑠Ψ = −∇𝑠 · 𝐽 u⊤,
u⊤ = ∇𝑠Φ + 𝐽 ∇𝑠Ψ,
𝐷Γ

𝐷𝑡
= −Γ𝜗 ,

𝐷𝜂

𝐷𝑡
= −𝜂𝜗 ,

(8a)

(8b)

(8c)

(8d)

(8e)
(8f)

(8g)

(8h)

where superscript ⊥ is used to represent normal components, Δ𝑝
represents the pressure difference through the film surface, 𝜎0 sig-
nifies the surface tension of pure water, 𝐻 and n are the mean
curvature and normal vector on the interfaces. Within our model,
the evolution of the normal components (Eq. (8a)), the surfactant
concentration (Eq. (8g)) and the film thickness (Eq. (8h)) continue
to follow the original forms established by Deng et al. [2022]; Ishida
et al. [2020]. Our model stands out from previous works due to
the inclusion of the vortex-based evolution equation for tangential
velocity (Eq. (8b) and the incorporation of the dilation (Eq. (8c)).

4 NUMERICAL ALGORITHMS
We propose a vortex particle-on-mesh method for dynamic interface
tracking and the intricate surface flow simulation.
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Fig. 5. The computation workflow of a single simulation step in our proposed vortex particle-on-mesh framework.

4.1 Discrete Geometry Representation
Our geometry discretization consists of a set of Lagrangian particles
P, a triangle mesh T and its dual mesh D, as depicted in Fig. 4.

• The Lagrangian particles P carry circulations Ω, velocities u,
surfactant concentration Γ and thickness 𝜂 advected by the
local fluid velocities, transporting matters and momentum on
the thin film.

• The triangle mesh T is responsible for tracking the underly-
ing geometry, and providing a stable computational stencil
for updating the circulation Ω and dilatation 𝜗 by chemical
and external forces, which we will store on the its vertices.

• The dual mesh D is the Voronoi dual of the triangle mesh
T . Geometrically, D’s vertices are the circumcenters of T ’s
triangles, and its elements are the Voronoi regions of T ’s
vertices. Dynamically, D is in charge of storing the velocity
variable u⊤. Such an assignment arise from the fact that we
storeΩ and𝜗 on the vertices of meshT , and these scalar fields
naturally reconstruct the vector field u⊤ on its the vertices
of its dual D, as detailed in the theory of discrete exterior
calculus [Crane et al. 2013; Elcott et al. 2007].

To facilitate clarity, we adopt the following notations: subscript
𝑝 for attributes store on Lagrangian particles P, subscript 𝑖 for
attributes store on the vertices of triangle mesh T , and subscript 𝑑
for attributes store on the vertices of D.

4.2 Time Integration
In each timestep, our algorithm solve Eq. (8a) to Eq. (8h) sequentially
through the following 6 steps, as illustrated in Fig. 5. We will explain
each of these steps in detail in the following subsections, where the
superscripts 𝑛 and 𝑛 + 1 are exclusively employed to denote the time
step index.

(1) Particle-mesh interpolation: From particles, transfer sur-
factant concentration Γ𝑛𝑝 , film thickness 𝜂𝑛𝑝 , circulation Ω𝑛

𝑝

to mesh T , and tangential velocity (u⊤𝑝 )𝑛 to dual mesh D.
Calculate the dilatation 𝜗𝑛

𝑖
on T .

(2) Normal advection: Evolve mesh T , dual mesh D and parti-
cles P in the normal direction by Eq. (8a).

Table 1. Main symbols involved throughout the algorithm and their storage
locations.

Symbol Storage Locations
Particles Vertices Dual Vertices Edges

Γ ✓ ✓
𝜂 ✓ ✓
Ω ✓ ✓
u⊤ ✓ ✓
𝜗 ✓
𝑣𝑖 𝑗 ✓
𝑤𝑖 𝑗 ✓

(3) Circulation-dilatation updates: Solve Eq. (8b) and Eq. (8c)
to update circulation to Ω†

𝑖
and dilatation to 𝜗†

𝑖
on mesh T .

(4) Velocity reconstruction & Boundary conditions: Solve
Eq. (8d), Eq. (8e) and Eq. (8f) to update tangential velocity
(u⊤

𝑑
)‡ of dual meshD with boundary conditions, also update

circulation to Ω‡
𝑖
and dilatation to 𝜗‡

𝑖
on mesh T .

(5) Mesh-particle interpolation: Transfer circulation Ω‡
𝑖
, di-

latation 𝜗
‡
𝑖
on mesh T , and tangential velocities (u⊤

𝑑
)‡ on

dual mesh D to the particles P to get Ω‡
𝑝 , 𝜗

‡
𝑝 and (u⊤𝑝 )‡.

(6) Particle updates: Update surfactant concentration to Γ𝑛+1𝑝

and film thickness 𝜂𝑛+1𝑝 on particles P by Eq. (8g) and Eq. (8h),
and advect their positions.

4.3 Particle-Mesh Transfer
For a generic fluid variable 𝑞, we interpolate 𝑞 from particles P at a
mesh vertex 𝑖 ∈ T with the following equation:

𝑞𝑖 =
∑︁

𝑝∈𝑁 𝑝
𝑟 (𝑖 )

𝑊 ( | |𝒙𝑖 − 𝒙𝑝 | |, 𝑟 )∑
𝑝∈𝑁 𝑝

𝑟 (𝑖 )𝑊 ( | |𝒙𝑖 − 𝒙𝑝 | |, 𝑟 )
𝑞𝑝 , (9)

where 𝑞𝑖 and 𝑞𝑝 denote values of 𝑞 on mesh vertex 𝑖 and particle 𝑝 ,
𝑟 the support radius, 𝑁𝑝

𝑟 (𝑖) the particles within radius 𝑟 of vertex 𝑖 ,
and 𝒙𝑖 and 𝒙𝑝 the vertex and particle positions respectively. Taking
into account the smoothing effect of surface tension on soap films,
which results in minimal curvature, we employ the 3D Euclidean
distance metric for computational simplicity. The function𝑊 is an
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SPH kernel function:

𝑊 (𝑑, 𝑟 ) =
{

4
𝜋𝑟 2

(
1 − 𝑑2

𝑟 2
)3

𝑑 < 𝑟,

0 otherwise,
(10)

defined in accordance with Adams and Wicke [2009]. Both the
surfactant concentration Γ𝑛 and thickness 𝜂𝑛 are interpolated from
P to T using Equation 9.
Analogously, a conservative fluid quantity 𝑠 is distributed from

particles P to vertices of the triangle mesh T with the following
equation:

𝑠𝑖 =
∑︁

𝑝∈𝑁 𝑝
𝑟 (𝑖 )

𝑊 ( | |x𝑖 − x𝑝 | |, 𝑟 )∑
𝑖∈𝑁 𝑖

𝑟 (𝑝 )𝑊 ( | |x𝑖 − x𝑝 | |, 𝑟 )
𝑠𝑝 , (11)

where 𝑁 𝑖
𝑟 (𝑝) denotes the vertices within radius 𝑟 from particle 𝑝 .

The circulation Ω𝑛 is distributed from particle to the mesh using
Equation 11. For both types of abovementioned transfers, we de-
fine 𝑟 as three times the length of the longest edge in the mesh at
initialization.

For velocity transfer between particles P and vertices of the dual
mesh D, the following equation is implemented:

(u⊤
𝑑
)𝑛 =

∑︁
𝑝∈𝑁 𝑝 (𝑑 )

𝑤𝑝∑
𝑝∈𝑁 𝑝 (𝑑 ) 𝑤𝑝

(u⊤𝑝 )𝑛 , (12)

where𝑤𝑝 represents the barycentric coordinate of particle 𝑝 within
its respective Voronoi cell, computed using the method proposed by
Warren et al. [2007]. Additionally, 𝑁𝑝 (𝑑) represents the particles
that reside on any dual face containing the dual vertex 𝑑 .
After obtaining (u⊤

𝑑
)𝑛 on the dual vertices, we compute 𝜗𝑛

𝑖
for

mesh vertex-i using Stokes’ theorem as:

𝜗𝑛𝑖 =
1
𝐴

∑︁
e𝑗𝑘

𝑓𝑗𝑘 , (13)

where e𝑗𝑘 iterates through all the boundary edge of the mesh ver-
tex’s Voronoi cell,𝐴 denotes the cell’s total area, and 𝑓𝑗𝑘 denotes the
flux through edge e𝑗𝑘 . We calculate 𝑓𝑗𝑘 as 𝑓𝑗𝑘 = − 1

2 ((u
⊤
𝑗
)𝑛+(u⊤

𝑘
)𝑛)·

(𝐽e𝑗𝑘 ), where (u⊤
𝑗
)𝑛 and (u⊤

𝑘
)𝑛 denote the tangential velocity of

the two ending points of e𝑗𝑘 , and the negative sign indicates that
the outward flux is considered positive. Following the right-hand
rule, the traversal direction of the boundary edges aligns with the
normal direction of the mesh vertex.

4.4 Normal Advection
We advance mesh T by solving Eq. (8a) in an explicit Eulerian
integration style as proposed by Ishida et al. [2020], followed by
a remeshing step [Brochu and Bridson 2009] to fix ill-conditioned
triangles. We reconstruct dual mesh D on updated T . To update
particles P in the normal direction, we first interpolate the normal
velocities u⊥

𝑖
and normal direction n𝑖 on the not-yet-updated mesh

T to obtain u⊥𝑝 and n𝑝 on particles P using barycentric weights, and
move particles by u⊥𝑝 . To project the particles P onto the updated
mesh T , we perform a search in the normal direction n𝑝 for each
particle 𝑝 to find the intersection with T , which is robust in the
context of the smoothing soap film surfaces.

4.5 Circulation-Dilatation Updates
We solve Eq. (8b) and Eq. (8c) by operator-splitting [Stam 1999] to
compute the evolution of circulation Ω and dilatation 𝜗 driven by
chemical and external forces. In general, we first apply forces except
the viscosity force to update Ω𝑛 and 𝜗𝑛 to Ω∗ and 𝜗∗. Then we apply
the viscosity force to update them to Ω† and 𝜗†. The Ω𝑛+1 and 𝜗𝑛+1
for the next step requires the boundary handling and advection,
which are described in detail in the latter subsections. Here we only
focus on the process before Ω† and 𝜗†.

Update to Ω∗. We discretize Eq. (8b) to update Ω as:

Ω∗
𝑖
− Ω𝑛

𝑖

Δ𝑡
= −2𝑅𝑇

𝜌
· 𝐴𝑣

𝐴𝑡

∑︁
𝑒 𝑗𝑘

Γ𝑛
𝑘
− Γ𝑛

𝑗

1
2 (𝜂𝑛𝑘 + 𝜂𝑛

𝑗
)
· 𝑙 𝑗𝑘 . (14)

The symbols are depicted on the right.
𝑒 𝑗𝑘 represents one of the boundary
edge in the 1-ring neighborhood of
the vertex-i, with a length of 𝑙 𝑗𝑘 .
The surfactant concentration and film
thickness on the ending points of 𝑒 𝑗𝑘
are denoted as Γ𝑗 , Γ𝑘 and 𝜂 𝑗 , 𝜂𝑘 re-
spectively, the Voronoi area associ-
ated with vertex 𝑖 is designated as𝐴𝑣 ,
while 𝐴𝑡 signifies the cumulative area of the triangles encompassed
within the 1-ring neighborhood surrounding vertex 𝑖 .

Update to 𝜗∗. Following Deng et al. [2022]; Huang et al. [2020],
we update 𝜗 by semi-implicitly integrating the surfactant concentra-
tion Γ on vertices of mesh P. The relation between the surfactant
concentration Γ and dilatation 𝜗 can be deduced from Eq. (8c) and
Eq. (8g): 

𝜗∗ − 𝜗𝑛

Δ𝑡
= − 2𝑅𝑇

𝜌 ∇𝑠 · ( ∇𝑠Γ
∗

𝜂𝑛 ) + 1
𝜌 ∇𝑠 · f

⊤
𝑒𝑥𝑡 , (15a)

Γ∗ − Γ𝑛

Δ𝑡
= −Γ𝑛𝜗∗. (15b)

This relation can be summarized to a single equation for Γ∗:

Γ∗

Δ𝑡Γ𝑛
− 2𝑅𝑇

𝜌
Δ𝑡∇𝑠 · (

∇𝑠Γ∗
𝜂𝑛

) = −𝜗𝑛 + 1
Δ𝑡

− Δ𝑡

𝜌
∇𝑠 · f⊤𝑒𝑥𝑡 . (16)

The left-hand-side of Eq. (16) turns to be a sparse linear system
which is symmetric positive definite for Γ∗ after discretizing the ∇𝑠
operator as proposed by Crane et al. [2013]. Once Γ∗ is solved, we
evaluate the 𝜗∗ for each vertex of mesh T by Eq. (15b).

Update to Ω† and 𝜗†. Finally, Building upon the approach pro-
posed by Elcott et al. [2007], viscous forces are further incorporated
in a semi-implicitly manner as:

Ω† − Ω∗

Δ𝑡
= 𝜈∇2

𝑠Ω
†, (17a)

𝜗† − 𝜗∗

Δ𝑡
= 𝜈∇2

𝑠𝜗
†, (17b)

where∇2
𝑠 is the standard cotangent Laplacianmatrix onmeshes [Meyer

et al. 2003].
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Fig. 6. Double Bubble. The dynamics of double bubble driven by surface tension and Marangoni force.

Fig. 7. Reconstruct velocities on dual mesh. Left: reconstruct v𝑑 from Φ.
Right: reconstruct w𝑑 from Ψ.

4.6 Velocity Reconstruction
In this subsection, we initially disregard the boundary conditions,
addressing them in the subsequent subsection. To reconstruct veloci-
ties on dual meshD from Ω† and 𝜗†, we first solve the intermediate
fields Ψ and Φ on mesh T by Eq. (8d) and Eq. (8e). The vorticity
∇𝑠 · 𝐽u⊤ on vertex-i is approximated by Ω†

𝑖
/𝑆𝑖 , where 𝑆𝑖 is the area

of the Voronoi cell of vertex-i. ∇2
𝑠 is discretized by the standard

cotangent Laplacian matrix on meshes [Meyer et al. 2003]. After
solving for Φ and Ψ, inspired by Elcott et al. [2007], we employ the
dual mesh D for velocity reconstruction using Equation (8f).
We illustrate the reconstruction process with a single triangle

example as shown in Fig. 7. For ∇𝑠Φ, it’s straightforward to obtain
the velocity along each edge as v𝑖 𝑗 = (Φ𝑗 − Φ𝑖 )/𝑙𝑖 𝑗 , where 𝑙𝑖 𝑗 is the
edge length between vertex-i and and vertex-j. The velocities on the
three edges of the triangle impose three constraints on the velocity
v𝑑 at the vertex of dual mesh: the parallel component of v𝑑 along
each edge should be equal to 𝑣𝑖 𝑗 . Note that

∑
v𝑖 𝑗 𝑙𝑖 𝑗 =

∑
Φ𝑗 −Φ𝑖 = 0

always holds for the velocities along the three edges, leaving us with
only two independent constraints that uniquely define the velocity
v𝑑 at the vertex of the dual mesh, which corresponds to the ∇𝑠Φ:

v𝑑 =
1
2𝐴 𝐽 (𝑣02𝑙02e01 + 𝑣01𝑙01e20), (18)

where e𝑖 𝑗 = x𝑗 − x𝑖 is the edge vector from vertex-i to vertex-j, 𝐴 is
the area of the triangle, and 𝐽 is the rotation operation.

𝐽∇𝑠Ψ is computed similarly, with the only difference being the
inclusion of an extra rotation 𝐽 . This yields w𝑑 , representing 𝐽∇𝑠Ψ

at the vertex of the dual mesh, and can be expressed as:

w𝑑 = − 1
2𝐴 (𝑤02𝑙02e01 +𝑤01𝑙01e20), (19)

where 𝑤𝑖 𝑗 = (Ψ𝑗 − Ψ𝑖 )/𝑙𝑖 𝑗 . The final tangential velocity (u⊤
𝑑
)† on

dual mesh is computed as (u⊤
𝑑
)† = v𝑑 +w𝑑 .

4.7 Boundary Conditions
We incorporate two boundary conditions in our algorithm. The first
one is the non-penetration Neumann boundary condition, which
can be achieved by setting n · ∇𝑠Φ = 0 and n · 𝐽∇𝑠Ψ = 0 when
solving Equations (8d) and (8e).

The second condition is the no-slip Dirichlet boundary condition,
where we employ the Immersed Boundary Method [Morency et al.
2012], i.e. setting the tangential velocities inside the solid to be the
same as the solid velocities. Note that the no-slip boundary condition
affects not only the tangential velocities, but also the circulation Ω
and dilatation 𝜗 . Therefore, instead of directly modifying u⊤, we
adjust the velocities 𝑣𝑖 𝑗 and 𝑤𝑖 𝑗 on edges in Eq. (18) and Eq. (19).
Specifically, after the viscosity update, we set 𝑣𝑖 𝑗 and 𝑤𝑖 𝑗 inside
the solid to be the projection of the solid velocity along the edge
direction, which accordingly changes the tangential velocity to
(u⊤

𝑑
)‡. Moreover, we update the circulation and dilatation to Ω‡

and 𝜗‡ by: 
Ω‡
𝑖

=
∑

𝑗 𝑤𝑖 𝑗 𝑙
′
𝑖 𝑗
, (20a)

𝜗
‡
𝑖

= 1
𝐴

∑
𝑗 𝑣𝑖 𝑗 𝑙

′
𝑖 𝑗
, (20b)

where 𝐴 is the Voronoi cell area of vertex-i, 𝑙 ′
𝑖 𝑗
denotes the length

of 𝑒𝑖 𝑗 ’s dual edge.

4.8 Mesh-Particle Interpolation
We transfer the updated circulation Ω‡, dilatation 𝜗‡ and tangential
velocities (u⊤)‡ to particles. To minimize numerical dissipation, we
choose to transfer the change of circulation 𝛿Ω = Ω‡ − Ω𝑛 from
mesh to particles as FLIP [Zhu and Bridson 2005]:

𝛿Ω𝑝 =
∑︁

𝑝∈𝑁 𝑝
𝑟 (𝑖 )

𝑊 ( | |x𝑖 − x𝑝 | |, 𝑟 )∑
𝑝∈𝑁 𝑝

𝑟 (𝑖 )𝑊 ( | |x𝑖 − x𝑝 | |, 𝑟 )
· 𝛿Ω𝑖 , (21)
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Fig. 8. Gravity Drainage. Left: Our method can accurately simulate the
changes in film thickness caused by gravity drainage and generates New-
ton’s interference fringes. Right: The steady-state thickness profile of our
simulation result(red dot) is highly consistent with the analytical solu-
tion(blue curve) proposed by Couder et al. [1989].

where the definition of𝑊 ( | |x𝑖 −x𝑝 | |, 𝑟 ) and 𝑁𝑝
𝑟 (𝑖) retains the same

as in the particle-mesh interpolation step. The dilatation 𝜗
‡
𝑝 on

particles are interpolated using the barycentric weights on mesh
T . For tangential velocities u⊤, we perform interpolation from the
dual mesh D to the particles’ tangential velocities (u⊤𝑝 )‡ using the
barycentric weights on the Voronoi cell, as introduced in Section 4.3.

4.9 Particle Updates
We updates the surfactant concentration Γ and film thickness 𝜂 on
particles using explicit Euler integration of Eq. (8g) and Eq. (8h) :

Γ𝑛+1 = −Γ𝑛𝜗‡𝑝Δ𝑡 + Γ𝑛 , (22a)

𝜂𝑛+1 = −𝜂𝑛𝜗‡𝑝Δ𝑡 + 𝜂𝑛 . (22b)

The particle positions are updated by tracing trajectories on the
underlining mesh [Shi and Yu 2004], and it is enhanced by the
classical Runge-Kutta method (RK4) to further reduce numerical
dissipation. The final circulation Ω𝑛+1

𝑝 and velocities u𝑛+1𝑝 are set
with Ω‡

𝑝 and u‡𝑝 . We avoid the computation of 𝜗𝑛+1𝑝 , because the
𝜗𝑛+1
𝑖

is constructed from the mesh velocities by Eq. 13 in the subse-
quent timestep, rather than being transferred from particles. This
completes our time integration.

5 NON-MANIFOLD
To model non-manifold geometries, we utilize a triangular mesh
Tnon and a set of vortex particles Pnon for discretization, adopting
a method similar to that proposed by Deng et al. [2022]. In this
model, a non-manifold foam is viewed as a collection of manifold
components, each triangular facet within Tnon is labeled to show
its association with a particular manifold. Most facets are linked to
a single manifold, but those on shared surfaces carry markings that
indicate their connection to adjacent manifolds. These collectively
marked facets for the same manifold 𝑖 constitute the mesh T 𝑖

non,
on which a well-defined dual mesh D𝑖

non is established. Similarly,
vortex particles are assigned to specific manifolds, which organizes
them into distinct groupsP𝑖

non for eachmanifold 𝑖 . Below, we outline
the simulation process for a non-manifold over a time step:

(1) Normal Evolution: The method proposed by Ishida et al.
[2020] is applicable to the normal evolution of non-manifold

Fig. 9. Von Kármán Vortex Street. After the steady incoming flow passes
through the solid, recurrent swirling vortices are generated behind the solid
using our method.

geometries and can be directly applied to our mesh Tnon. Af-
terward, we perform the remeshing and project the particles
Pnon onto the mesh Tnon as described in Section 4.4.

(2) Tangential Evolution: For each manifold 𝑖 , we integrate
time as outlined in Section ?? (excluding the normal evolution
described in Section 4.4) using T 𝑖

non, D𝑖
non and P𝑖

non.
(3) Material Exchange: When particles from manifold 𝑖 reach

a facet 𝑡 located on a shared surface between manifolds 𝑖 and
𝑗 , there is a possibility they could be assignable to manifold
𝑗 . This procedure aims to promote the movement of material
from regions with high surfactant concentrations to those
with lower concentrations. As a result, we have introduced a
probabilistic approach for the migration of vortex particles,
inspired by Deng et al. [2022], detailed as follows:

𝐶 = 𝜓 ·
(
1 −min

(
1,
Γ
𝑗

𝑃

Γ𝑖
𝑃

))
. (23)

In this equation,𝜓 is the transport strength parameter, and Γ𝑖
𝑃

and Γ
𝑗

𝑃
denote the surfactant concentrations at the locations

of the particles on manifolds 𝑖 and 𝑗 , respectively. The proba-
bility of a particle being reassigned to manifold 𝑗 is calculated
using min(1,𝐶).

6 RESULTS

6.1 Validation
Gravity Drainage. This phenomenon underscores the significance

of considering velocity divergence for the accurate simulation of
soap films, which is also the key to distinguishing our method from
other 2D incompressible Navier-Stokes solvers [Azencot et al. 2014;
Elcott et al. 2007; Shi and Yu 2004]. When the film is positioned ver-
tically, the fluid gradually flows downwards due to its own weight,
resulting in an increased thickness at the bottom. It’s conceivable
that the divergence of the velocity field is negative at the top and
positive at the bottom. As a result, the surfactant gradually accu-
mulates at the bottom, giving rise to an upward Marangoni force
to counteract gravity, and eventually achieving equilibrium in this
process. The steady-state thickness profile, derived by Couder et al.
[1989], takes the form 𝜂 (𝑧) = 𝜂0𝑒

− 𝜌𝑔𝜂0𝑧
2(𝜎0−𝜎 ) , where 𝜂0 denotes the

film thickness when it is laid flat. By setting 𝜂0 = 400 nm, we
confirm the alignment of our simulation result with the analytical
solution, as illustrated on the right side of Fig. 8. Its exponential

ACM Trans. Graph., Vol. 43, No. 4, Article 53. Publication date: July 2024.



53:10 • Ningxiao Tao, Liangwang Ruan, Yitong Deng, Bo Zhu, Bin Wang, and Baoquan Chen

(a) Ishida et al. [2020]’s method

(b) Deng et al. [2022]’s method

(c) our method

Fig. 10. Taylor vortices. The initial distance between the two vortices satis-
fies the separation condition, so they should gradually separate during the
rotation process. From top to bottom are results from: [Ishida et al. 2020],
[Deng et al. 2022] and ours, respectively. Only our approach successfully
achieves their separation.

variation in thickness produces characteristic Newton’s interference
fringes, depicted as color stripes on the left side of Fig. 8. In con-
trast, two-dimensional incompressible fluid solvers only permit a
divergence-free velocity field on their surfaces [Azencot et al. 2014;
Elcott et al. 2007; Shi and Yu 2004], which hinders the evolution of
mass and surfactant concentration, making it impossible to achieve
physically realistic results.

Von Kármán vortex street. As depicted in Fig. 9, a stick with a
radius of 0.15 m is vertically inserted into one end of a soap film.
The film is subjected to open boundary conditions, and a steady
flow (from right to left with a velocity of 2.5 m/s) maintains on the
film. The recurrent formation of swirling vortices behind the stick,
recognized as the von Kármán vortex street, verified the no-slip
boundary condition at the fluid-structure coupling boundary are
correctly handled in our method.

6.2 Comparison
6.2.1 Comparison with soap film simulation approaches. We con-
duct a qualitative comparison between the existing particle-based
[Deng et al. 2022] and mesh-based [Ishida et al. 2020] approaches
to soap film simulations, focusing on the preservation of tangential
vortex structures. This comparison is conducted through two com-
monly used benchmark tests. To ensure a fair comparison, both our
method and mesh-based method [Ishida et al. 2020] are performed
using the same underlying mesh. As for the pure particle-based
method [Deng et al. 2022], since the role of its E and L particles
are equivalent to the mesh vertices and particles in ours, we adjust
the number of E and L particles to be approximately equal to the
number of mesh vertices and particles in our method, respectively,
the computational details can be found in Table 2.

(a) Ishida et al. [2020]’s method

(b) Deng et al. [2022]’s method

(c) our method

Fig. 11. Leapfrog. Four equal-strength point vortices are placed at the left-
hand side of the fluid domain. The upper two and the lower two have
opposite rotating directions. From top to bottom are results from: [Ishida
et al. 2020], [Deng et al. 2022] and ours, respectively. Our approach demon-
strates a remarkable ability to preserve these vortices for longer durations.

Taylor Vortex. In this experiment, we place two vortices in close
proximity using the configuration outlined by McKenzie [2007]. The
subsequent separation or merging of these vortices during the simu-
lation depends on their initial distance, which we specified as 0.81 m,
slightly exceeding the critical separation distance. As depicted in
Fig. 10, both Deng et al. [2022] and Ishida et al. [2020] struggle to
effectively separate the two vortices, whereas our approach success-
fully achieves their separation. The specific simulation configuration
for the three compared methods comprises approximately 4k mesh
vertices (E particles) and 8w vortex particles (L particles).

Leapfrog. In the classic 2D leapfrog experiment depicted in Fig. 11,
we place four point vortices centered at coordinates 𝑥 = −1.5 and
𝑦 = [−0.6, 0.6,−0.2, 0.2]. These vortices are of equal strength, with
the upper two being positive and the lower two being negative.
Our approach demonstrates a remarkable ability to preserve these
vortices for longer durations when compared to both [Ishida et al.
2020] and [Deng et al. 2022]. The specific simulation configuration
for the three compared methods consist of approximately 8k mesh
vertices (E particles) and 16w vortex particles (L particles).

6.2.2 Comparison with Vortex Method. We also performed a com-
parative evaluation of our method against the established state-of-
the-art vorticity-streamfunction solver for triangular meshes, as
proposed by Azencot et al. [2014], in tangential flow simulations.
We implemented this method in C++ and evaluated its performance
in two scenarios: first, where the mesh resolution was equivalent to
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(a) Azencot et al. [2014]’s method with matching mesh resolution to ours

(b) Azencot et al. [2014]’s method with the number of mesh vertices was
comparable to the number of our vortex particles

(c) our method

Fig. 12. Comparison with Vortex Method. The top result is simulated using
the method proposed by Azencot et al. [2014], which is based on a triangular
mesh with 4225 vertices and 8192 faces. The middle result also utilizes the
method proposed by Azencot et al. [2014], but with a finer triangular mesh
with 66049 vertices and 131072 faces. The bottom result is simulated using
our method, operating on a triangular mesh with 4225 vertices, 8192 faces,
and 81920 vortex particles.

ours, and second, where the number of mesh vertices was compara-
ble to the number of our vortex particles. Both tests were performed
during simulations of the Taylor vortex phenomenon. As depicted in
Fig. 12, in the first scenario, our method delivered a superior visual
representation. Although the visual results were comparable in the
second scenario, our method demonstrated greater computational
efficiency, as indicated in Table 3. These outcomes underscore the
effectiveness and efficiency of our hybrid particle-mesh technique
for simulating vortices.

6.3 Examples
The comprehensive specifications for all the examples simulated by
our proposed system, along with the details of the computational
resources employed, can be found in Table 4. The photorealistic
rendering is accomplished within Houdini [SideFX 2023], with color
derived from thin film interference [GameDev.net 2013].

Deforming Hemisphere. A hemispherical soap bubble with a ra-
dius of 0.5 m undergoes free vibrations in response to its initial
deformation. The initial deformation, surface thickness and surfac-
tant concentration all conform to a 1-octave Perlin noise distribution,
reflected in its smooth shape and color change (see upper-left of
Fig. 1a). Concurrently driven by the gravity and Marangoni force,

Fig. 13. Giant Bubble. A spherical soap bubble with a radius of 0.5m un-
dergoing free vibrations in response to its initial deformation is simulated
with our method. Due to the initial perturbation on physical attributes,
the bubble surface exhibits intricate surface flows, driven by the interplay
between gravity and Marangoni force.

the bubble surface exhibits rich surface flows, as demonstrated in
Fig. 1b. Additionally, the soap bubble gradually thickens from top to
bottom, with the upper end displaying a golden hue and the lower
end exhibiting a green shade, as shown in lower-right of Fig. 1a.

Giant Bubble. Following a initial configuration akin to the hemi-
spherical bubble example, our method replicates intricate surface
flow patterns over a giant spherical bubble as shown in Fig. 13.

Deforming Rectangle. A rectangular soap film( 4 m by 2 m) main-
tains a uniform surfactant concentration and a smooth thickness
transition from 𝜂 ≈ 400 nm at the top to 𝜂 ≈ 200 nm at the bottom.
Initially, both the soap film’s thickness and surfactant concentration
feature Perlin noise perturbations (top of Fig. 14a). As the simulation
progresses, under the interplay of gravity and Marangoni force, a
multitude of vortex structures (see the middle two figures of Fig. 14a)
evolve on the film’s surface due to the interplay between gravity
and the Marangoni force. Ultimately, the film reaches a stable equi-
librium state, with the thickness gradually increasing from top to
bottom, as is shown in the lower part of Fig. 14a.

Rayleigh-Taylor Instability. In the initial configuration, a thin film
is divided into two layers, with the upper half having a greater
thickness and lower surfactant concentration, while the lower half
having a thinner layer and higher surfactant concentration. At the
boundary between these two layers, a fragile unstable equilibrium
is established due to the interplay of the gravity and Marangoni
forces. During the simulation, this local equilibrium is disrupted by
the randomness in particle distribution, causing a parcel of denser
fluid to move downward. As the denser material descends under the
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(a) Simulation process (b) ZoomIn

Fig. 14. Deforming Rectangle. A free-vibrating rectangular soap film ( with
a uniform surfactant concentration and a smooth thickness transition from
𝜂 ≈ 400 nm at the top to 𝜂 ≈ 200 nm at the bottom) is simulated with our
method. Left: from top to bottom are 4 stages of the simulation. Initially, the
soap film exhibits Perlin noise in thickness and surfactant concentration.
As the simulation progresses, numerous vortex structures develop on the
surface. Eventually, a stable equilibrium state is reached. Right: multiscale
vortices captured at one snapshot of the simulation.

influence of gravity, and the lighter material rise further upward,
the disturbance rapidly spreads throughout the space. To replicate
the real experiment setup by Shabalina et al. [2019], during the
simulation, we maintain a constant thickness for the upper layer,
while allowing the thickness of the lower layer to evolve dynamically.
As illstrated in Fig. 3, the finger-like transformation of the interface
in our simulation is consistent with the observations in real world,
as documented by Shabalina et al. [2019].

Stick. A soap film starts with a linear thickness gradient and
uniform surfactant. Without considering the effect of gravity, as
there is no concentration gradient on the film, the Marangoni effect
does not manifest, resulting in the absence of tangential fluid flow.
However, as depicted in Fig. 2, moving a stick horizontally across
the film introduces a velocity disturbance at the fluid-solid interface,
leading to captivating turbulent vortices within the region where
the stick traverses.

Water Strider. A bipedal miniature robot, resembling a water
strider, glides smoothly on a thin soap film, as demonstrated in
Fig. 15a. We initialized the thickness and surfactant concentration of

Table 2. Simulation parameters for the comparisons with Deng et al. [2022];
Ishida et al. [2020]: the total computation time 𝑇 (s) for simulating a five-
second animation using the respective method, the number of vertices 𝑉 ,
the number of faces 𝐹 , the number of vortex particles 𝑁 (for [Deng et al.
2022] we record the number of E particles and L particles instead).

Figure Scene T(s) 𝑉 𝐹 𝑁

10a Taylor vortex† 96 4225 8192 -
10b Taylor vortex‡ 195 - - 4096E+84100L
10c Taylor vortex∗ 325 4225 8192 81920
11a Leapfrog† 226 8385 16384 -
11b Leapfrog‡ 756 - - 8192E+168490L
11c Leapfrog∗ 763 8385 16384 163840

† simulated using method proposed by Ishida et al. [2020].
‡ simulated using method proposed by Deng et al. [2022].
∗ simulated using our method.

Table 3. Simulation parameters and time statistics for comparisons with
Azencot et al. [2014]: the computation time for each step𝑇 (s) , the number
of vertices𝑉 , the number of faces 𝐹 , the number of vortex particles 𝑁 . The
time step size has been uniformly set at ℎ = 0.01 s.

Fig. Method 𝑇 (s) 𝑉 𝐹 𝑁

12a [Azencot et al. 2014] 0.19 4225 8192 -
12b [Azencot et al. 2014] 16.6 66049 131072 -
12c Ours 0.65 4225 8192 81920

the soap layer using a method akin to the previous Stick experiment.
The robot is kinematically controlled to propel itself forward, with
its two legs periodically stepping on the film. Upone contact, the
robot’s legs create instantaneous velocity perturbations in both the
normal and tangential directions on the surrounding fluid flim. This
leads to the emergence of intriguing swirling patterns (see Fig. 15b)
on the surface of the liquid film.

Double Bubble. Fig. 6 illustrates two bubbles, each with a radius of
approximately 0.8 m, arranged to form a double bubble with a com-
mon surface. These bubbles start with velocities directed towards
each other. The double bubble should have a uniform surfactant
concentration, with its thickness gradually decreasing from about
500 nm in the upper region to about 100 nm at the bottom. Initially,
both the thickness and the surfactant concentration are disturbed by
Perlin noise. As the simulation progresses, driven by the Marangoni
force, there is an exchange of material between the bubbles, creating
complex surface flows as shown in Fig. 6.

7 CONCLUSION, LIMITATION, AND FUTURE WORK
We presented a physically-based vortex fluid model for soap films,
adeptly addressing the intricate challenge of simulating visually
complicated vortical structures on dynamically evolving thin films
and their interactions with the 3D physical environment. By decom-
posing the film’s tangential velocity into circulation and dilatation
components and advancing their evolution through a hybrid particle-
mesh approach, our model bridges the gap between the previous
thin-film models and vortex methods. Our framework facilitates a
comprehensive integration of surfactant and thickness dynamics,
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(a) Simulation process (b) ZoomIn

Fig. 15. Water Strider. Left: A bipedal miniature robot periodically steps on the soap film, triggering intricate swirling patterns on liquid film surface. Right:
The fine strucutre of the vortex flow in the black-framed regions.

Table 4. Simulation parameters for the examples: the number of vertices𝑉 , the number of faces 𝐹 , the number of vortex particles 𝑁 . We solve all of our linear
system using ICPCG solver from Eigen library [Guennebaud et al. 2010]. Simulation time per step for all the examples was recorded on a desktop equipped
with an AMD Ryzen™ 7950X processor.

Figure Scene Description Time Step(s) 𝑉 𝐹 𝑁 Simulation Time/Step(s)
8 Gravity Drainage 1e-2 1261 2400 24000 0.16
9 Von Kármán vortex street 1e-2 24929 49152 491520 3.55
13 Giant Bubble 1e-2 163842 327680 3276800 77.52
14 Deforming Rectangle 1e-2 131841 262144 2621440 66.30
1 Deforming Hemisphere 1e-2 82177 163584 1635840 17.43
3 Rayleigh-Taylor Instability 1e-3 66177 131072 1310720 9.6
2 Stick 1e-2 123713 245760 2457600 37.27
15 Water Strider 1e-2 131841 262144 2621440 71.40
6 Double Bubble 1e-2 30632 62796 2752080 89.28

ensuring a high-fidelity Eulerian-Lagrangian representation capable
of tackling the various interactions between the codimension-zero
physical forces and codimension-one flow dynamics. In sum, our
work marks a noticeable step toward the accurate simulation of thin
film dynamics, offering state-of-the-art vortical detail and physi-
cal accuracy, and sets a new standard for realism in thin-film fluid
simulation within computer graphics.
Our approach encounters several limitations. First, our current

framework struggles with managing the topological evolution of
soap film, a task that was successfully achieved by previous meth-
ods [Deng et al. 2022; Saye and Sethian 2013]. In order to enable
more flexible topological evolution, the background mesh could be
substituted with more adaptable geometric representations, such as
point-set surfaces. This substitution necessitates a re-derivation of
the circulation and dilatation evolution models for these novel data
structures. Second, our current implementation of solid boundaries
employs kinematic conditions only. Advancing this to incorporate
two-way coupling models between thin-film vortices and light-
weight objects is an exciting prospect, which would particularly
focus on addressing surface-tension-dominated contact problems
on thin-film surfaces. Third, maintaining our method’s numerical

stability requires high mesh quality and a large number of particles
to ensure accurate surface tension calculations and prevent thick-
ness at mesh vertices from dropping to zero after particle-mesh
interpolation. Finally, our method is limited to simply-connected
regions with minimal curvature, such as bubbles, due to its reliance
on 3D Euclidean distance and zero harmonic component. Future
work could incorporate dynamics of harmonic components in non-
simply-connected domains [Yin et al. 2023] and precise distance
calculation on curved surface to broaden simulation capabilities.

In summary, we anticipate that vortex methods for thin films will
open new frontiers in both film simulation and solid-fluid interaction
research. Addressing these computational challenges promises to
unlock a wide range of novel fluid phenomena that will greatly
enrich the domain of graphical simulations.
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