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Fig. 1. Our computational framework can realize various small-scale surface tension phenomena, including thin films, droplets, and intricate contact dynamics,
by enhancing a position-based fluid framework. From left to right, the images present: dynamics of a droplet impacting on a cone, fluid catenoid, tweezers for
droplets, teapot effect, and dam breaking with high surface tension.

This paper presents a novel approach to simulating surface tension flow

within a position-based dynamics (PBD) framework. We enhance the conven-

tional PBD fluid method in terms of its surface representation and constraint

enforcement to furnish support for the simulation of interfacial phenomena

driven by strong surface tension and contact dynamics. The key component

of our framework is an on-the-fly local meshing algorithm to build the local

geometry around each surface particle. Based on this local mesh structure,

we devise novel surface constraints that can be integrated seamlessly into a

PBD framework to model strong surface tension effects. We demonstrate

the efficacy of our approach by simulating a multitude of surface tension

flow examples exhibiting intricate interfacial dynamics of films and drops,

which were all infeasible for a traditional PBD method.
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1 INTRODUCTION
The position-based fluid simulation, after its invention by Macklin

and Müller [2013], has been enjoying its multifaceted advantages

regarding the implementation easiness, computational performance,

and coupling friendliness in many computer graphics applications.

The cornerstone of the framework is a particle-based discretization

with a density constraint on each particle to control the weighted

average of the number density in its vicinity. These particle density

constraints are further enforced via projection iterations, which

support robust, large-timestep simulations of various constraint

physical systems such as soft bodies [Müller et al. 2007], cloth [Kim

et al. 2012], hair [Müller et al. 2012], rods [Umetani et al. 2015], and

fluid [Macklin et al. 2014].

Despite the advent of PBD on different fronts of physical sim-

ulation, its potential for simulating interfacial flow phenomena

remains largely unexplored. Many visually appealing fluid systems

driven by strong interfacial forces, ranging from films to bubbles

and from small drops on impact to liquid bridges in a tweezer, stay

on the periphery of the current PBD research and therefore endure

their insulation from the elongating list of the multi-physics simula-

tions supported by PBD. In the first position-based fluid framework

[Macklin and Müller 2013], the fluid’s surface tension effects were

realized with an artificial pressure term to cohere the boundary

particles inward. This numerical treatment enjoys its easiness for

implementation yet suffers from the limited range of parameters and,

therefore, scope of phenomena being supported. On the one hand,

a conventional PBD method cannot simulate thin fluid phenomena

such as films or bubbles because of the undistinguished treatment

of surface and interior particles. On the other hand, because this

mechanic was implemented jointly with the artificial pressure term,

it can only support small or moderate surface tension simulation

without suffering from any numerical instabilities. Adding the sur-

face tension as an explicit force term like SPH [Akinci et al. 2013;

Wang et al. 2021] or MPM [Chen et al. 2021] does not fit PBD’s

constraint-based nature and will not alleviate such instabilities.
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Fig. 2. Teapot effect: from left to right, as the teapot gradually tilts, the liquid in it flows out with increasing speed. When the flow rate is low, the liquid tends
to dribble down the outside of the spout. Top: rendered by a reconstructed mesh; bottom: rendered by original particles.

To address these challenges in terms of interface representa-

tion and constraint formulation, we proposed a novel approach

to extending the current PBD framework to support strong sur-

face tension flow simulation. We tackle the problem on two fronts.

First, we augment the current particle-based surface representa-

tion with a local (and imperfect) mesh data structure, which boosts

the model’s geometric expressiveness regarding the liquid surface

and film capturing and accuracy regarding the surface tension solv-

ing, with a marginal computational overhead. Second, we build an

area-minimization constraint for each surface particle based on this

local mesh representation and incorporate these constraints into a

standard PBD framework. With these two extensions, we enhance

the geometric complexities and enlarge the parameter range of a

traditional position-based fluid solver, which leads to the support of

many surface tension phenomena that were previously impractical

due to either the interface’s geometric complexities or computa-

tional cost. Our local mesh scheme was motivated by a series of

recent works in solving numerical PDEs on a point-set discretiza-

tion [Lai et al. 2013], the hybridization of meshes and particles in

simulating moving particle semi-implicit (MPS) fluid [Matsunaga

et al. 2020], as well as the many mesh-based front-tracking and

simulation methods in computer graphics [Clausen et al. 2013; Da

et al. 2015, 2016; Wojtan et al. 2011; Yu et al. 2012]. To the best of

our knowledge, our approach is the first to leverage local mesh con-

nectivities to facilitate the particle fluid’s interfacial representation,

which combines the computational merits of both mesh-based and

particle-based methods and extends the traditional PBD fluid to

support rich surface tension effects.

We summarize our main contributions as follows:

• The first hybrid particle and local mesh representation for

modeling Lagrangian interfacial fluid;

• A novel constraint formulation based on local area minimiza-

tion for the PBD framework;

• The first position-based fluid simulation approach that sup-

ports small-scale surface tension phenomena.

2 RELATED WORK
Position-based Dynamics. Müller et al. [2007] first introduce the

position-based dynamics (PBD) framework to enable real-time soft-

body simulation in computer graphics. By directly manipulating

each particle’s position, PBD can achieve robust simulations under

large timesteps, which further enables the simulation of a broad spec-

trum of materials including deformable solids [Bender et al. 2014],

cloth [Kim et al. 2012], curly hair [Müller et al. 2012], rods [Umetani

et al. 2015], sands[Macklin et al. 2014], fluids [Macklin and Müller

2013], and various coupling effects [Frâncu and Moldoveanu 2017;

Robinson-Mosher et al. 2008; Rumman et al. 2020]. We refer readers

to [Bender et al. 2017] for a comprehensive survey on PBD simula-

tions. Among these pieces of work, Macklin and Müller [2013] first

use PBD to simulate fluid, in which a density constraint augmented

with an artificial pressure term for penalizing abnormal particle

gathering is added to each particle to enforce incompressibility and

mimic surface tension. Alduán et al. [2017] further extend the PBD

fluid method with the density contrast formulation to accommo-

date fluids with different densities and resolutions. A traditional

position-based fluid method cannot realize authentic surface tension

effects by naively increasing the artificial pressure or the number

of iterations, which limits its ability in modeling many small-scale

fluid scenes such as realistic films, bubbles, and drops. To the best

of our knowledge, there exists no effective constraint in the PBD

framework for surface tension, by neither minimizing surface area

nor calculating curvature.

Lagrangian front tracking. A Lagrangian front tracking algorithm

maintains a moving Lagrangian data structure, traditionally with

simplicial meshes [Da et al. 2016; Wojtan et al. 2010; Zhu et al. 2014]

and recently with point sets [Wang et al. 2020, 2021], to capture the

evolution of a dynamic interface and solve physics on it. Compared

with grid-based interface tracking methods such as level sets [Foster

and Fedkiw 2001; Osher and Sethian 1988; Sethian and Smereka

2003] or volume of fluid (VOF) [Hirt and Nichols 1981], mesh-based

approaches manifest their unique merits regarding their highly de-

tailed surface geometry and flow dynamics. For example, Thürey

et al. [2010] combine a high-resolution triangle mesh with a low-

resolution grid to obtain a detailed simulation of capillary effects on

liquid surface. Brochu et al. [2010] use a surface mesh to guide the

placement of additional pressure samples in a Voronoi discretization

to capture thin fluid structures such as films and splashes. Yu et al.

[2012] use a temporally coherent surface mesh, advected with parti-

cle velocity field, for both the fluid interface and the fluid properties
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tracking. Zhu et al. [2015, 2014] use a non-manifold simplicial mesh

to track and solve fluid volumes with codimensional features. Da

et al. [2016] simulate volumetric fluids with only the degrees of

freedom on the surface mesh, which is later extended to simulate

ferrofluid [Huang and Michels 2020] and large-scale water surfaces

[Huang et al. 2021]. Most of these methods rely on a manifold mesh

to track the dynamic fluid surface and calculate its surface tension

force. The simulation quality highly relies on the mesh quality. Any

mesh connectivity inconsistencies, which will probably lead to holes

on the surface, will quickly expand and break the fluid film due to

the contracting surface tension force on the rim. To maintain such

a good-quality mesh is costly, requiring mesh repair operations

[Brochu et al. 2010] or global remeshing schemes [Zheng et al. 2015]

in each timestep. This meshing overhead can be alleviated by dy-

namic point-set alternatives [Wang et al. 2020, 2021], at the expense

of implementing a new set of codimensional differential operators

discretized on moving points.

Lagrangian surface tension. Surface tension is ubiquitous in fluid

phenomena on small scales. The existing Lagrangian methods can

be mainly categorized into three groups according to their different

ways of calculating the surface tension force. The first category

simulates surface tension based on inter-particle cohesive forces

[Becker and Teschner 2007; Clavet et al. 2005; Kim et al. 2021; Tar-

takovsky and Meakin 2005]. These methods avoid computing sur-

face curvature and only use pairwise forces between particles, thus

ensuring momentum conservation. The accuracy of the cohesion-

based method largely depends on a full ring of neighboring particles

in the vicinity, which limits its ability to model thin flow features

such as films and membranes. The second category approximates

surface tension with the local normal and curvature [Akinci et al.

2013; Hyde et al. 2020; Müller et al. 2003; Wang et al. 2020, 2021;

Zhang 2010]. These methods rely on a robust boundary detection

algorithm and an accurate reconstruction scheme (e.g., moving least

squares) to approximate the local geometry [Hyde et al. 2020; Wang

et al. 2020, 2021; Zhang 2010]. The third category is to calculate the

surface tension force on a surface mesh [Da et al. 2016; Ruan et al.

2021; Yu et al. 2012; Zhang et al. 2011], allowing an accurate ap-

proximation of the local surface and, therefore, the surface tension

calculation. Another benefit of using an explicit mesh is its easiness

for thin feature representation. Thus, mesh-based surface tension

models support an ensemble of interesting bubble and film simula-

tions (e.g., [Batty et al. 2012; Da et al. 2015; Ishida et al. 2017; Zhang

et al. 2012; Zhu et al. 2015, 2014]). The main bottleneck of a mesh-

based method is the computational cost of generating a high-quality

mesh, whose implementation typically cannot be parallelized.

3 BACKGROUND
We briefly introduce the position-based fluid framework [Macklin

et al. 2014] for completeness. In a PBD fluid solver, the fluid volume

is discretized as a set of particles. Each particle carries the same

mass𝑚 and position p𝑖 . For particle 𝑖 , we compute its density using

the standard SPH density estimator:

𝜌𝑖 =
∑︁

𝑗 ∈𝑁 (𝑖)
𝑚𝑊 (p𝑖 − p𝑗 , ℎ), (1)

where 𝑊 is the kernel function, ℎ is the kernel radius, 𝑁 (𝑖) =

{ 𝑗1, · · · , 𝑗𝑘𝑖 , 𝑖} is the set of neighboring particles within the kernel

radius and 𝑖 itself. We use the cubic spline kernel [Koschier et al.

2019] and set ℎ to be 6 times particle radius in our simulation.

The fluid incompressibility is enforced by a density constraint

𝐶
𝜌

𝑖
applied on each particle as

𝐶
𝜌

𝑖
(p𝑖 , p𝑗1 , · · · , p𝑗𝑘𝑖 ) =

𝜌𝑖

𝜌0
− 1, (2)

where 𝜌0 is the density at the initial configuration. The density

constraints are solved using the Newton-Raphson method. For each

constraint 𝐶
𝜌

𝑖
, a position correction along the constraint gradient

direction Δp = 𝜆𝑖∇𝐶𝜌

𝑖
is applied to make 𝐶

𝜌

𝑖
(p + Δp) = 0. By a

first-order Taylor expansion of 𝐶
𝜌

𝑖
, we solve 𝜆𝑖 as:

𝜆𝑖 = −
𝐶
𝜌

𝑖
(p)∑

𝑘∈𝑁 (𝑖) ∥∇𝑘𝐶
𝜌

𝑖
(p)∥2 + 𝜀

. (3)

The 𝜀 in the denominator is a user-specified relaxation parameter

(also called constraint force mixing (CFM) [Smith 2004]) which is

tuned to obtain different simulation effects.

Surface tension treatment. The surface tension effect is realized

by an artificial pressure term. Summing up the contributions from

the density constraint of each neighboring particle as well, the total

position correction Δp𝑖 for particle 𝑖 is:

Δp𝑖 =
𝑚

𝜌0

∑︁
𝑗 ∈𝑁 (𝑖)

( 𝑠corr
𝑚
+ 𝜆𝑖 + 𝜆 𝑗

)
∇𝑊 (p𝑖 − p𝑗 , ℎ), (4)

in which 𝑠corr = −𝑘 (𝑊 (p𝑖 −p𝑗 , ℎ)/𝑊 (Δq, ℎ))𝑛 with ∥Δq∥ as a fixed
distance smaller than ℎ is the so-called artificial pressure term. As

neighboring particles 𝑖 and 𝑗 get closer to each other, 𝑠corr increases

sharply and behaves as a repulsive force to prevent abnormal parti-

cle clustering. Consequently, boundary particles pull their neighbors

inwards, which produces the surface-tension-like surface minimiza-

tion effect, with its strength controlled by the value of 𝑘 .

4 ALGORITHM
The main body of our algorithm consists of four components: sur-

face particle detection, local mesh construction, surface tension

constraints, and time integration. The implementation of these four

components can be based on a standard position-based fluid frame-

work. We introduce each of the components in the following sec-

tions.

4.1 Surface Particle Detection
The first step of our approach

is to identify the surface parti-

cles and calculate their surface

normals. Our algorithm is based

on the light shading method pro-

posed in [Shibata et al. 2015]. As

shown in the inset figure, we place

a point light source in the center

of each particle casting light rays

to a spherical virtual screen sur-

rounding it. An interior particle is detected if the particle’s screen is
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Fig. 3. Our local mesh construction algorithm with four sub-steps.

all shadowed by its neighbors. And a boundary particle is detected

if at least one part of the particle’s screen is not shadowed.

Mathematically, this process is modeled by a scalar 𝑅
illum

that

denotes the fraction of each source particle’s overall illuminated area.

We use the threshold 𝛽 = 1/9 to classify surface and interior particles.
We refer the readers to Supplementary 1 for implementation details.

Normal calculation. After detecting all the surface particles, we
further estimate their normal vectors by calculating the color gradi-

ent on each particle. This step follows the SPH normal calculation

method proposed in [Müller et al. 2003]. We define the color field

in position p as:

𝑐 (p) =
∑︁

𝑗 ∈𝑁 (p)

𝑚

𝜌 𝑗
𝑊 (p − p𝑗 , ℎ), (5)

where 𝑁 (p) is the set of neighboring particles around p within the

kernel radius. This function indicates 1 inside the fluid, 0 outside

the fluid, and manifests a smooth transition near the boundary. We

compute the normal vector as the color gradient:

n∗𝑖 = −∇𝑐 (p𝑖 ) = −
∑︁

𝑗 ∈𝑁 (𝑖)

𝑚

𝜌 𝑗
∇𝑊 (p𝑖 − p𝑗 , ℎ), n𝑖 =

n∗
𝑖

∥n∗
𝑖
∥ . (6)

It is worth noting that the color gradient was used in [Müller et al.

2003] also for surface particle detection. We did not choose to do

so because we notice a gradient-based approach tends to detect a

narrow band of particles rather than a sharp layer, which does not

fit the requirement of our local meshing algorithm.

4.2 Local Mesh Construction
After labeling all the surface particles, we will represent the local

geometry of each particle (i.e., their local area, shape, and curvature)

by building a local mesh structure based on its neighboring particles.

In particular, we build a full ring of triangles centered around the

given particle as the local mesh representation, without considering

the triangle rings in other particles, to feature the geometry in the

particle’s vicinity on the surface. It is worthmentioning that the local

mesh construction is carried out for every surface particle in parallel,

and each particle will maintain its incident triangles separately

without checking the triangle redundancy or inconsistency across

different particles. This local mesh is further used to establish the

surface tension constraints and their sensitivities for each particle.

As shown in Figure 3, our local mesh construction algorithm

consists of four steps, including neighbor search, particle projection,

planar Delaunay triangulation, and mesh construction.

(1) Neighbor search: For each surface particle 𝑖 , we find all the

neighboring surface particles within a kernel radius through

the nearest neighbor search, which is denoted as K𝑖 .
(2) Particle projection: K𝑖 and p𝑖 are projected onto a tangen-

tial plane T𝑖 which passes through p𝑖 and is perpendicular to

n𝑖 .
(3) Delaunay triangulation: We carry out a 2D Delaunay tri-

angulation [Delaunay et al. 1934] on T𝑖 , with particle 𝑖 and

K𝑖 ’s projected coordinates as the input of the Delaunay al-

gorithm. We use the Delaunator library https://github.com/

delfrrr/delaunator-cpp for implementation.

(4) Local mesh construction: We build the local meshM𝑖 of

p𝑖 by taking its 1-ring mesh on T𝑖 and replacing the vertex

part with the corresponding particles’ 3D position.

Triangle non-manifoldness.
We note that the local mesh

representation has non-manifold

triangles across different par-

ticles. Ideally, on a manifold

mesh, a triangle should belong

to the local mesh of each of its

three vertices. However, on a local mesh, this might not be the case.

For instance, as shown in the inset figure, after separate Delaunay

triangulations on the two particles A and B, B has ACB and ADB

in its local mesh, while A’s local mesh does not include ACB and

ADB, but has ACD instead. In a traditional mesh-based simulator,

such non-manifold triangles will cause problems because they intro-

duce holes onto the surface discretization, which will be inevitably

enlarged due to the -induced contraction forces on their rims.

Our position-based framework naturally avoids this issue because

the role of each particle’s local mesh is to establish a surface area

constraint in the projection system, and no connectivity assumption

is needed to enforce these constraints. As long as each particle’s

local mesh has a full ring of triangles and can properly reflect its

local geometry (i.e., area and curvature), we do not need to check

or ensure any connectivity manifoldness across particles. As such,

reminiscent of the role of local differentiable operators in [Wang

et al. 2020, 2021], the local mesh in our setting is used to approx-

imate a local shape (in order to minimize the local surface area),

rather than to construct a globally manifold mesh. Therefore, it can

safely enjoy its parallel nature without worrying about any element

manifoldness issues (see our validation in Section 6.1). In this sense,
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(a) Top view (b) Front view

Fig. 4. Impaled droplet: a water drop impacting a hydrophobic cone with an aperture of 120°. The water drop is pierced and bursts into a string of pearls.

we regard our local mesh scheme to be naturally compliant with

PBD for its surface representation.

4.3 Surface Tension Constraint
Based on each particle’s local mesh, we devise two types of con-

straints, including the surface area constraint and the unilateral

edge distance constraint, to model the surface area minimization

process and meanwhile maintain a uniform distribution of particles

on the evolving surface. This constraint-enabled tension mechanics

further interacts with the incompressible constraints to produce

surface tension effects. We discuss each constraint type as follows.

Area constraint. We build an area-minimization constraint to min-

imize the area sum of the triangles on each particle’s local mesh.

For particle 𝑖 and its neighboring triangle set 𝑇 (𝑖) = {𝑡1, · · · , 𝑡𝑘𝑖 },
the area constraint 𝐶𝑖 is defined as

𝐶𝐴
𝑖 (p) =

∑︁
𝑡 ∈𝑇 (𝑖)

1

2

∥(p𝑡2 − p𝑡1 ) × (p𝑡3 − p𝑡1 )∥, (7)

in which 𝑡1,2,3 represents the three particle indices of triangle 𝑡 . The

gradients of the area constraint function with respect to the particle

positions p𝑡1 , p𝑡2 and p𝑡3 are calculated as

∇𝑡1𝐶𝐴
𝑡 (p) =

1

2

(p𝑡2 − p𝑡1 ) × (p𝑡3 − p𝑡1 )
∥(p𝑡2 − p𝑡1 ) × (p𝑡3 − p𝑡1 )∥

× (p𝑡3 − p𝑡2 ),

∇𝑡2𝐶𝐴
𝑡 (p) =

1

2

(p𝑡3 − p𝑡2 ) × (p𝑡1 − p𝑡2 )
∥(p𝑡3 − p𝑡2 ) × (p𝑡1 − p𝑡2 )∥

× (p𝑡1 − p𝑡3 ),

∇𝑡3𝐶𝐴
𝑡 (p) =

1

2

(p𝑡1 − p𝑡3 ) × (p𝑡2 − p𝑡3 )
∥(p𝑡1 − p𝑡3 ) × (p𝑡2 − p𝑡3 )∥

× (p𝑡2 − p𝑡1 ).

(8)

Distance constraint. The surface tension force tends to minimize

the mesh area around each particle. During this process, particles

may gather and redistribute unevenly on the surface. We devise

an additional unilateral distance constraint to solve the particles’

uneven distribution problem. The constraint is defined as

𝐶𝐷
𝑖 𝑗 (p) = min{0, ∥p𝑖 − p𝑗 ∥ − 𝑑0}, (9)

in which p𝑖 and p𝑗 are neighboring particles with identical type

labels (surface or inner), and 𝑑0 is set to be 2 times of particle radius.

The gradients of the constraint function with respect to particle

positions p𝑖 and p𝑗 are

∇𝑖𝐶𝐷
𝑖 𝑗 (p) =

{
0, ∥p𝑖 − p𝑗 ∥ > 𝑑0,
p𝑖−p𝑗
∥p𝑖−p𝑗 ∥ , others.

∇𝑗𝐶𝐷
𝑖 𝑗 (p) =

{
0, ∥p𝑖 − p𝑗 ∥ > 𝑑0,
p𝑗−p𝑖
∥p𝑖−p𝑗 ∥ , others.

(10)

We note that the distance constraint can be applied to both surface

particles and volume particles without causing any jittering artifacts.

In our experiments, we observe our distance constraints achieve

similar effects as the artificial repulsive force in PBD fluid when

they are applied to volume particles.

4.4 Time Integration
Last, we integrate our surface particle detection, local mesh con-

struction, and surface tension constraints into a traditional position-

based fluid framework. The entire algorithm is demonstrated in 1

(the new steps are in violet). We rebuild our constraints for each

resetIter iteration for potential topology changes during the con-

straint projection. We use resetIter = 10 for all our simulations.

Algorithm 1 Simulation Loop

1: for each particle 𝑖 do v𝑖 ← v𝑖 + Δ𝑡
𝑚 f𝑒𝑥𝑡

𝑖
2: for each particle 𝑖 do p∗

𝑖
← p𝑖 + Δ𝑡v𝑖

3: for 𝑘 ← 0, · · · , nIter do
4: if 𝑘%resetIter = 0 then
5: S ← DetectSurfaceParticles(p∗)
6: M ← BuildLocalMesh(p∗,S)
7: 𝐶𝜌 ,𝐶𝐴,𝐶𝐷 ← BuildConstraints(p∗,M)
8: p∗ ← ProjectConstraints(p∗,𝐶𝜌 ,𝐶𝐴,𝐶𝐷 )
9: for each particle 𝑖 do v𝑖 ← (p∗𝑖 − p𝑖 )/Δ𝑡
10: v← ApplyViscosity(v, p∗)
11: for each particle 𝑖 do p𝑖 ← p𝑖 + Δ𝑡v𝑖
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Fig. 5. The merge of two square droplets. The blue dots represent fluid
particle, and the black arrows are the surface normal at that point.

(a) (b)

Fig. 6. Two typical configurations when nearby particles 𝑖 and 𝑗 possess
obviously different normal directions. (a) particles are on the different sides
of the membrane; (b) particles are on two approaching surfaces.

5 TOPOLOGICAL/CODIMENSIONAL TRANSITIONS
Topological transitions. Surface tension flow manifests compli-

cated topological changes, ranging from fluid volume merging and

splitting to sliding on a solid surface. Handling these topological

changes remains substantially challenging for a mesh-based method

(e.g., [Da et al. 2016; Huang and Michels 2020; Yu et al. 2012], which

requires implementing an ensemble of meshing operations in a

highly dynamic setting. Our method does not rely on local mesh-

ing operations to track topological transitions. Instead, topological

evolution, such as fluid volume merging and splitting, can happen

naturally with particles. In each time step, we detect surface parti-

cles using the algorithm in Section 4.1 and build a local mesh for

each particle, which we found can sufficiently reconstruct the local

topological features. For example, as shown in Figure 5, when two

fluid volumes get close, the local mesh algorithm can automatically

distinguish the topology before and after a collision. The splitting

process is the inverse of the merging process shown in Figure 5 and

the topological change is also processed automatically, as the local

mesh connectivities between two particles will vanish automatically

when one particle moves out from the neighbor range of the other.

Codimensional transitions. Our framework handles two types of

codimensional transitions, between fluid volumes and films, and

between fluid volumes and filaments. First, we handle the codimen-

sional transition from a volume to a film with an additional normal

check. We represent a thin film using two layers of surface par-

ticles. The side of each particle is identified by its normal vector

based on the color field (see Equation 6). For the situation shown

in Figure 6a, it is sufficient to remove particle 𝑗 from particle 𝑖’s

neighbors based on the large discrepancy of their normal directions

(i.e. arccos(n𝑖 · n𝑗 ) > 𝜃 holds, where 𝜃 = 𝜋
4
). However, nearby

particles with obviously different normal directions may also come

(a) Our method

(b) PBD with 10 iterations

(c) PBD with 50 iterations

Fig. 7. Droplet hitting the ground: a free-falling droplet can bounce off the
ground after squeezing into a thin disk. From top to bottom are results from:
our method, PBD fluids with 10 iterations and 50 iterations, respectively.

from two approaching volumes, as shown in Figure 6b. In order to

allow them to merge, in practice, we only remove particle 𝑗 from 𝑖’s

neighbors if arccos(n𝑖 · n𝑗 ) > 𝜃 and (n𝑖 − n𝑗 ) · (p𝑖 − p𝑗 ) > 0 hold

simultaneously.

The codimensional transition from a film to a volume can natu-

rally happen when the film gets thickened with incoming volumes

(see examples in Figure 11). Second, we handle the transitions be-

tween fluid volumes and filaments. A fluid volume can transition

to a filament in a way similar to the volume-film transition. For

filament-to-volume transition, we lower the density constraint to

avoid any particles being "locked" on the filament due to the com-

plicated interactions among density, distance, and area constraints.

Specifically, we detect the fila-

ment particles by applying Prin-

cipal Component Analysis (PCA)

to the neighborhood particle po-

sitions (see Supplementary 2) and

turn off their density constraints.

The inset figure compares the

simulations with the density con-

straints turned on, which ex-

hibit non-contractable filament ar-

tifacts, and turned off, in which fluid filaments naturally become

droplets under surface tension. We employ a simple mechanism for

the isolated particles: a particle becomes an isolated droplet when

it splits from the bulk; an isolated particle merges into the bulk if

they are close.

6 RESULTS
In this section, we first describe experiments that help to validate

the correctness of our algorithm. Then, we demonstrate the efficacy
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(a) Our method

(b) PBD

(c) Our method W/O𝐶𝐷

Fig. 8. Film catenoid: A fluid membrane is attached to two parallel circular rings. When the rings separate from each other, under surface tension, the
membrane will contract in the center to minimize its surface, and finally split into two membranes and splash out some small droplets in the middle after the
ring separation surpasses the Laplace limit. (a) simulation result using our method, which can reproduce the entire process; (b) simulation snapshot using
traditional position-based fluid solver, which failed right away; (c) simulation snapshot using our method without distance constraint, in which particles
clustered and non-physical holes on the membrane can be observed.

Fig. 9. Parameter study of iteration number. As the iteration number in-
crease, the area constraint converges smoothly and saturates when the
cubic droplet turns into a sphere.

of our method through an array of examples dominated by strong

surface tension.

6.1 Validation
Comparison to PBD fluid. We first compare our approach to tradi-

tional PBD fluid [Macklin et al. 2014] in two examples to showcase

the efficacy of our surface tension constraints and local mesh rep-

resentation. When a droplet falls onto a solid surface, the liquid

will be flattened to a thin film and then pulled back by its surface

tension. Our method successfully reproduces this phenomenon (see

Figure 7a ). However, PBD simulations with strong (50 iterations per

frame, Figure 7b ) and weak (10 iterations per frame, Figure 7c) sur-

face tension both blow up at the moment when the droplet squeezes

into a thin disk. In the film catenoid example, a fluid membrane is

initially attached to two solid rings moving apart from each other.

The membrane contracts and splits into two, with small droplets

Fig. 10. Cubic droplets colliding under different surface tension intensities.
Top and bottom show simulation snapshots at the same time instance with
𝜀𝐴 = 5.0 and 𝜀𝐴 = 1.0 respectively.

pinched off in the middle. Our method can reproduce the entire

process (see Figure 8). In comparison, the traditional position-based

fluid solver fails right away due to the incorrect surface tension

model on a thin film.

Ablation study on distance constraints. We conduct an ablation

study of the distance constraints in the film catenoid example as

shown in Figure 8. We compare the simulations with and without

the distance constraints under the same parameter setting. The

results show that the distance constraints can distribute the particles

uniformly on a dynamic surface, yet the simulationwith only density

constraints will manifest non-physical holes on the membrane due

to the particle clustering.

Parameter study of 𝜀𝐴 . We show a parameter study of surface

tension effects by tuning the value of 𝜀𝐴 of area constraints. Figure

10 shows the simulation results of two cubic droplets colliding with

𝜀𝐴 = 5.0 and 1.0 respectively. Large surface tension (top row) turns

the cubic droplets into a sphere quickly, while the area minimization

process is much slower for small surface tension (bottom row).
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Fig. 11. Liquid membrane filter: relies on surface tension force, free-falling droplets carrying big enough momentum can pass through the first membrane, but
are trapped by the second membrane after it is slowed down.

Fig. 12. Tweezers for droplets: the periodic open and close motion of the chopstick "tweezers" can drive the trapped droplets to move toward the narrow end.

Fig. 13. Area calculation on a uniformly sampled sphere with different meth-
ods. With different kernel sizes, both our local mesh and the manifold mesh
converge to the true solution, while the SPH method could not converge.

Parameter study of iteration number. We study the influence of the

number of iterations on enforcing the surface tension constraints.

We set up a quasistatic simulation to turn a cubic droplet into a

sphere within a single time step. The convergence plot in Figure 9

shows that the droplet’s surface area stably converges to its min-

imum as the droplet’s shape turns from a cube to a sphere. We

visualize three snapshots of fluid shapes during the iterations.

Non-manifold triangle statistics. We measure the triangles’ non-

manifoldness in the particles’ local meshes by counting the duplica-

tion of each triangle. Figure 16 plots the ratio between the number

of non-manifold triangles over the number of all triangles in the

droplet collision example. Except for the initialization in the first

few frames, the ratio is consistently below 2.5%, and for most of

the frames, this ratio is below 0.5%. At the same time, we visualize

(a) Our method

(b) [Akinci et al. 2013]’s method

Fig. 14. A fluid film with its rim fixed on a ring oscillates with zero gravity.
Our constraint-based formulation (a) can deliver more stable simulation
results than the explicit force-based method in [Akinci et al. 2013] (b).

the non-manifold triangles with a different color, as shown in the

two screenshots in Figure 16. We can observe that these triangles

are randomly distributed over the entire surface. No artifacts are

observed in the simulation around these non-manifold triangles.

Comparison to explicit force based methods. It is always possible
to add a force term explicitly to a PBD system, reminiscent of how

gravity is treated. To justify this, we implemented the SPH force

in [Akinci et al. 2013] in a PBD framework. As shown in Figure 17,

we observed that an explicit force model does not deliver a robust

simulation under large surface tension. The same SPH force model

does not work for thin-film simulation, as shown in Figure 14.

Comparison on surface-area calculation. We performed a simple

test for surface area calculation using the local mesh, manifold mesh,

and the SPH method (using the codimension-1 cubic spline kernel).

We sample points on a unit sphere. As shown in Figure 13, as the

particle number increases, both local and manifold meshes converge

to the ground truth. However, the SPH method manifests a large

variation with different kernel sizes (3 − 6 times the particle radius).
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Fig. 15. Faucet dripping: image sequence of a drop of water dripping from
a faucet, including the formation of the liquid neck due to surface tension,
and its subsequent thinning until breakup. The pink meshes in each inset
figure are constructed using our proposed method.

Fig. 16. Statistics of non-manifold ratio for droplets colliding example. In the
inset figures, triangles with pink color are consistent ones, while triangles
with blue color are non-manifold ones.

6.2 Examples
Impaled droplet. Figure 4 shows a droplet impaling on a hydropho-

bic solid cone [Durey et al. 2020] with an aperture of 120°. The water

drop is pierced by the tip of the cone and repelled into a ring shape

by the slope. Then, the liquid ring expands and breaks into smaller

drops under surface tension. This example demonstrates a series of

topological changes of the droplets under surface tension.

Dripping faucet. In the dripping faucet example, as shown in

Figure 15, fluid flows out from a faucet and forms a neck due to

the surface tension force, and then it pinches off into a series of

small droplets. This phenomenon is also called Rayleigh-Plateau

instability [Plateau 1873]. We also visualize the local mesh in the

(a) Our method

(b) PBD with explicit surface tension force in [Akinci et al. 2013]

Fig. 17. A cubic droplet gradually turns into a sphere driven by surface
tension force. (a) simulation result using our method, which can reproduce
the entire process; (b) simulation snapshots using traditional PBD fluid
solver, with surface tension treated as an explicit force term using the model
in [Akinci et al. 2013].

animation to show its evolution. In addition, we demonstrate the

comparison with the water drips from a pipe with different surface

tension coefficients (see the supplementary video).

Drop rail. We simulate two examples with water droplets inter-

acting with hydrophilic chopsticks. The adhesion between droplets

and solids is modeled as adhesion constraints [Bender et al. 2017] in

all our examples. In Figure 19, water droplets roll off a pair of chop-

sticks under the influence of gravity, surface tension, and adhesion

forces. We can observe rich topological changes in this simulation,

including droplets merging, pinching off, wetting, and dribbling.

Liquid tweezer. We show a liquid tweezer in Figure 12. The water

droplets are sandwiched in a chopstick ’tweezer’. As the tweezer

opens and closes periodically, the interaction between surface ten-

sion and adhesion force drives the droplets to move towards to the

narrow end of the chopstick. This simulation reproduced a sim-

plified version of a real bird drinking water with its long beaks,

motivated by [Prakash et al. 2008].

Double-membrane filter. The liquid membrane filter relies on sur-

face tension force for object separation. Only fluid volumes with

a strong enough momentum can pass through the membrane. As

shown in Figure 11, the droplet gains enough momentum during

free falling and successfully passes through the first membrane.

However, due to this interaction, the droplet is caught by the second

membrane. Complicated topological and codimension transitions

happen during this process, including the droplet merging into and

pinching off from a wet liquid film.

Surface tension splash. We reproduce the classic bunny example

in [Macklin et al. 2014] enhanced with high surface tension effects.

As shown in Figure 18, the water from the breaking dam flushes

onto a bunny, creating high splashes and pinched-off drops due to

strong surface tension.

Teapot effect. We simulate the teapot effect [Duez et al. 2010] to

showcase our algorithm’s ability to handle solid-fluid interactions.

The teapot effect shows the tendency for liquid to dribble down
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Fig. 18. Bunny splash: the water from the breaking dam flushes onto a rabbit, creating a high splash and spherical drops.

Fig. 19. Water droplets roll off chopsticks under the influence of gravity, surface tension, and adhesion force and exhibit rich dynamic effects, such as merging,
pinching off, wetting, and dribbling.

Table 1. Simulation parameters for the examples.

Example

§

# Particles 𝜀𝐴
†

𝑔 # Iterations

Time/Frame

Surface Detection Local Mesh Project Constraints Total (s)

Droplets Colliding 9262 5&1 0 100 7.1% 5.3% 64.7% 1.7

Bouncing Droplet 11494 1 0 100 6.7% 5.4% 70.8% 2.4

Impaled droplet 47369 0.8 0 15 8.3% 6.1% 50.0% 1.8

Faucet dripping 28336 0.21 1 100 6.5% 5.4% 66.7% 7.8

Drop rail 4280 5 1 100 4.7% 6.5% 64.5% 1.1

Liquid tweezer 14346 0.1 0 100 5.2% 3.2% 80.0% 6.0

Double-membrane filter 23957 1.0 0.5 40 14% 25% 10.2% 5.2

Film catenoid 53620 0.08 0 100 7.6% 12.6% 60.7% 7.9

Surface tension splash 441143 1 9.8 10 14% 5% 31.2% 6.4

Teapot effect 121308 3 4 20 3.7(s) 1.8(s) 3.0(s) 21.3
‡

§
The time step size is 1/30s for all examples.

† 𝜀𝐴 is the CFM of surface constraints, we use 𝜀𝐷 = 40 for distance constraints, 𝜀𝜌 = 180 for density constraints in surface tension splash and teapot effect, 𝜀𝜌 = 600 for

the rest of examples.

‡
Most of the time is consumed by detecting whether two neighboring particles are inside/outside the teapot at the same time by computing the closest normal on the mesh,

which prevents artifacts caused by the thin wall of the teapot.

the outside of the spout when pouring with a low flow rate. This

phenomenon is driven by the interaction between adhesion and

surface tension force. In the simulation shown in Figure 2, a teapot

filled with water is gradually tilted. As the teapot angle gets inclined,

the flow rate increases, the flow adhesion effects are weakened, and

splashes start to flow.

6.3 Performance
We parallelize most of the steps in our algorithm using OpenMP

[Dagum and Menon 1998] on the CPU. All experiments were per-

formed on an Intel(R) Xeon(R) 28-core processor. The parameters

and timing statistics are summarized in Table 1. From Table 1, we

can see that the main bottleneck still comes from the constraint

projection step as conventional PBD. For bulk liquid simulations,

our method only adds a small computation overhead to the origin

PBD fluid solver. Moreover, most of the extra computational loads

are concentrated on the surface particle detection step, especially for

large-scale volumetric examples. For thin film examples, the over-

all extra computational cost is reasonably low. Since the portion

of surface particles is much higher in these scenarios, the surface

construction step becomes the major time consumer. The total time

can be further accelerated if we implement our algorithm on GPU.

7 CONCLUSION
We proposed a novel PBD method to simulate surface tension flow.

Our approach enhanced the traditional PBD framework with a lo-

cal mesh representation, which effectively characterizes the local

geometric features and enables accurate surface tension calculation.

This geometric representation, as well as its constraint formula,

are parallelizable and easy to integrate into a standard PBD fluid
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framework. We demonstrate the efficacy of our approach by simu-

lating several surface tension flow examples, such as liquid tweezer,

membrane filter, and teapot effects, which were all impractical for a

traditional PBD method.

8 LIMITATION AND FUTURE WORK
We identify three limitations of our method. First, our local mesh

scheme relies on accurate surface particle detection. If an interior

particle is incorrectly detected as a surface particle, it will contribute

surface tension to the system in a non-physical way. Therefore, a

more versatile local mesh scheme that is not sensitive to particle

distribution can improve the method’s geometric robustness. Sec-

ond, though our approach can significantly improve the surface

tension effects of the PBD fluid, it does not provide a physically

accurate model to simulate these interfacial phenomena from the

first principles. The 𝜀 values used in our example do not correspond

to the surface tension coefficients in real-world settings. Therefore,

its current application scope is within fluid animation. Third, we

insert the new constraints into the default PBD projection scheme

without investigating any acceleration strategies. We anticipate that

well-designed preconditioners and optimization schemes can lead

to better convergence rates and performance, which will benefit

interactive or even real-time simulations.

For future work, we plan to continue our exploration in these

three directions to explore more robust local mesh schemes, more

accurate physical models, and effective preconditioners for the PBD

projection scheme. In particular, we are interested in extending the

current local mesh method to enhance other particle-based fluid

solvers such as SPH and PIC/FLIP. Incorporating more complex

physical models such as viscoelasticity and magnetic-mechanical

coupling is another interesting direction to explore.
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