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Figure 1: Physics-aligned 3D reconstruction. (a) A 3D mesh reconstructed from a single-view image using generative model Hunyuan3D
2.5 [LZL*25]. (b) The assigned undeformed model (blue) sags under gravity, resulting in a mismatch between the simulated shape (yellow)
and the observed target shape (gray). (c) Given the material properties and target shape (gray), our method efficiently computes a physically
plausible rest shape (blue), producing simulated results (yellow) that closely align with the target (gray). Input images courtesy of [GWM™ 24,

ZYW*24].

Abstract

We present an efficient and scalable method for the inverse shape design problem of elastic objects, with broad applicability
to diverse materials and interactive editing. The core idea is to decouple material nonlinearity from geometry optimization by
introducing the Cauchy stress tensor as an auxiliary variable. We design a three-stage scheme that iteratively optimizes the
stress tensors and the rest shape, with each stage being well-posed and efficiently-solvable. To address the lack of a theoretical
convergence guarantee arising from the decoupled energy formulation, we incorporate a relaxation method that ensures robust
stability in practice. As a result, our method achieves a 3x speedup over the state-of-the-art asymptotic method [Jia2l] on a
model with 40k vertices and 112k elements (Fig. 2), and exhibits near-linear scalability to large systems (Fig. 8). We demon-
strate applications including rest shape design for various materials (ranging from standard models to complex spline-based
materials [XSZB15]), interactive material and force editing, and elastic object reconstruction from images.

CCS Concepts

» Computing methodologies — Physical simulation; * Applied computing — Computer-aided design;

1. Introduction

Elastic objects are ubiquitous in our surroundings, serving diverse
functions under various external loads such as gravity, compres-
sion and distortion. To physically fabricate such objects, one must
first determine their undeformed rest shape in the absence of exter-
nal forces. Inverse shape design addresses this task systematically,
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eliminating the need for manual trial-and-error. Given an elastic ob-
ject with a known constitutive model, the goal is to solve the static
equilibrium equation:

f('x7x)+fext:07 (1)

where f is the internal elastic force derived from the constitutive
model ¥, f.,. represents external loads, x is the observed deformed
shape, and X is the unknown rest shape to be recovered.

Eq. 1 also arises in forward simulation, but with x unknown
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Figure 2: Convergence analysis in comparison to SANM [Jia21]. An octopus model with its top fixed is inverted from a gravity-balanced
state (orange) to its gravity-free rest shape (gray) with both our method and SANM. Our method rapidly reduces the position error within
first few iterations, whereas SANM converges more slowly. Including precomputation, our method takes only 5.1 seconds to reduce the RMS
position error below 1073 (around 1/1000 of the model scale), compared to 15 seconds for SANM, achieving a 3 X speedup.

and X given. In that case, Eq. 1 can be reformulated as a scalar
energy minimization problem because f is conservative with re-
spect to x. This property enables the use of efficient optimization-
based solvers [BML* 14, LBK17]. In the inverse setting, X is un-
known, f is no longer conservative w.r.t X. This fundamental dif-
ference prevents the direct application of fast forward solvers. Pre-
vious methods have attempted to address this challenge through
least-squares optimization [TKA11, WWY*15], Lagrangian mul-
tiplier [STBG12, ZCT21], and asymptotic expansion [CZXZ14,
Jia21]. However, these approaches often suffer from slow conver-
gence due to dense Hessians [TKA11], larger indefinite system due
to Lagrangian multiplier [ZCT21], or limited generality for down-
stream applications [Jia21].

In contrast, we tackle this challenge by reformulating Eq. 1 into
a multi-stage optimization problem and designing efficient solvers
for each stage. Inspired by the recently proposed sag-free initializ-
ing method [HTYW22] and multi-stage solvers in forward simula-
tions [BML*14,BN21], we introduce the Cauchy stress tensor G as
auxiliary variables, reformulating Eq. 1 as:

F(x,6(x,X)) + fexe = 0. 2

Rather than solving directly for X, we alternate between updating
X and 6 via Eq. 2. This splitting strategy offers two key advan-
tages. First, the force can be seen as a function of ¢ instead of
X. This function is much simpler, as it bypasses the constitutive
model. Second, The relation between 6, x and X can be localized
to every element, because 6 depends only on the deformation gra-
dient F. This localized relation enables parallel computation. The
introduction of 6 decomposes the original problem into two sub-
problems. Each subproblem becomes simpler and can be solved
with more efficient solvers. In the context of forward simulations,
this idea closely aligns with the philosophy of Projective Dynam-
ics (PD) [LBOK13,BML*14,NOB16].

Based on this formulation, we design a three-stage solver as de-
tailed in Sec. 3: (1) Force stage: update stress tensor 6 given force
[ (2) Stress stage: update local deformations given 6; (3) Geom-
etry stage: update rest shape X by "stitching" local deformations.
These three stages are iterated until convergence. The force and
geometry stages require global linear solves and the stress stage
is fully localized and parallelizable. We therefore call this three-
stage solver a global-local-global solver. Though each stage is well-
formulated, the combined multi-stage solver is not theoretically
guaranteed to converge, as there is no consistent global energy to
optimize. To mitigate this problem, we further introduce a relax-
ation strategy as detailed in Sec. 3.4, enabling our method to stably
converge in practice.

As a result, our three-stage solver achieves a 3x accelera-
tion compared to the previous state-of-the-art inverse shape de-
sign method [Jia21] in the example of Fig. 2, while also demon-
strating near-linear scalability (Fig. 8). Moreover, since only the
stress stage requires a constitutive model, our framework can eas-
ily incorporate a wide range of isotropic materials, including sta-
ble Neo-Hookean [SGK18], StVK [SB12], and complex spline-
based materials [XSZB15]. The method naturally prevents unphys-
ical element inversions and over-stretching artifacts during the op-
timization. These properties enable diverse applications: fast rest
shape design for large-scale systems, interactive editing of material
properties and external forces, and integration with 3D generation
model like Hunyuan3D [LZL*25] to reconstruct physically plausi-
ble rest shapes from images. In summary, our inverse shape design
solver makes the following contributions:

. asplitting formulation of the inverse design problem that decou-
ples material nonlinearity from geometry optimization;

. a three-stage solver to solve the subproblems, validated through
various experiments;
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Figure 3: The same cactus model (yellow) has different static
shapes (green, first column) under different external loads and ini-
tial perturbations. In the first three rows, the cactus is subjected to
the same gravity but with different initial perturbations, while in the
last row, the cactus is subjected to a centrifugal force. These four
rows therefore exhibit different static shapes to begin with. Regard-
less of the different static shapes, our method consistently recovers
the same rest shape (green, third column) that matches the ground
truth shape. The second row shows intermediate states during the
convergence process.

3. an efficient implementation that supports editing of both mate-
rial properties and external forces interactively.

2. Related Work
2.1. Inverse Shape Design for Animation

Inverse shape design for elastic objects has been a longstand-
ing research topic in computer animations [TKA11, DJBDDT13,
HTYW?22]. Artists often specify the static equilibrium state of an
object(like flowers or hairs), which can lead to unwanted sagging
artifacts when gravity is directly applied to the equilibrium state.
Twigg et al. [TKA11] formulate this problem for mass-spring sys-
tems and propose an algorithm to determine the proper rest length
for each spring. Hadap et al. [Had06] use a multi-body reduced
model from robotics to compute the zero-gravity rest shape of
strands. Derouet et al. [DJBDDT13] further account for internal
frictional contact in hairs, introducing a convex second-order cone
quadratic program (CSOCQP) solver to convert hair geometry into
a physics-based model. Ly et al. [LCBD* 18] study the inverse de-
sign for elastic shells, also considering frictional contact. Takahashi
et al. [TB25] employ Gauss-Newton iterations to solve the inverse

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

design problem for the Discrete Elastic Rod(DER) model of hairs.
These methods were specifically tailored for slender structures such
as hair or thin shells. More generally, Hsu er al. [HTYW?22] pro-
pose a two-stage method for sag-free elastic initialization. Their
key observation is that removing sagging artifacts only requires lo-
cal rest shape, such as spring rest length or tetrahedral deformation,
rather than a full global rest shape. This insight greatly simplifies
the inverse shape design problem and reduces geometry nonlinear-
ity. Hsu et al. [HWP*23] further extend this technique to strand-
based hair simulation. Despite its simplicity and efficiency, this
formulation can not recover a global rest shape, which limits its
applicability in animation. We’ll discussion the differences of our
work and [HTYW22] in Sec 4.1.5.

2.2. Fabrication-oriented Design

The goal of fabrication-oriented design is to produce geometries,
mechanical structures, and material distributions that satisfy the
fabrication constraints and achieve desired physical functionali-
ties. Depending on the tasks and settings, various methods have
been proposed, such as 3D printing objects that can remain sta-
ble under gravity [PWLSH13], designing balloons that inflate
into prescribed shapes [STBG12], or bending wires to match a
target curve [TSBU24], etc. In this work, we focus on solving
Eq. 1, i.e. recovering rest shapes with given static shapes and
elastic materials. Wang et al. [WWY*15] formulate Eq. 1 as a
least squares optimization problem and solve it using Newton’s
method. Because the mapping from f to X is highly nonlinear,
squaring Eq. 1 produces an ill-conditioned problem that is diffi-
cult to optimize. For simplicity, Mukherjee et al. [MWW18] di-
rectly apply the Newton—Raphson method to solve Eq. 1, but this
leads to a non-symmetric Hessian matrix equation in each itera-
tion and still suffers from sever material nonlinearity. Instead of
treating x as known, some works jointly solve for both x and
X [STBGI12, STK* 14, ZCT21], optimize the consistency between
x and the target deformed shape while treating force equilibrium
as constraints. For constraint handling, Skouras et al. [STBG12]
uses the Augmented Lagrangian method, Skouras et al. [STK* 14]
and Zehnder et al. [ZCT21] use SQP (Sequential Quadratic Pro-
gramming). These methods introduce more free variables to op-
timize, or even indefinite system when using SQP. In contrast,
Chen et al. [CZXZ14] and Jia et al. [Jia21] propose asymptotic
methods to solve Eq. 1. Their core idea is to approximate the lo-
cal nonlinearity of Eq. 1 using polynomial expansions, thereby
avoiding the ill-conditioning that often arises in optimization-based
approaches. Asymptotic methods achieve the fastest convergence
speed among existing techniques for inverse shape design, but they
require closed-form constitutive models, limiting their generality.
Recently, although the framework of [GWM™24] has been de-
veloped to reconstruct 3D physical objects from a single image,
it still rely on the conventional first-order stochastic gradient de-
scent for optimization. In contrast to these works, without requiring
costly global nonlinear optimization, our method employs a multi-
staged strategy to decouple material nonlinearity from optimiza-
tions, achieving more efficient convergence.
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Figure 4: Pipeline overview: given an input static shape, our algorithm iteratively performs the three stages described in Sec. 3 until

converging to the final rest shape.

2.3. Local-Global Solver

For forward elastic simulation, a variety of efficient optimization-
based solvers have been developed [BML*14, LBK17, LGL*19,
RWLC24]. Among them, we mainly draw inspiration from the
idea of local-global iterations [BML*14]. Liu et al. [LBOK13] in-
troduce spring directions as auxiliary local variables that are up-
dated iteratively alongside global positions. Although this intro-
duces additional DoFs, the subproblem of local and global vari-
ables are both straightforward to solve, yielding orders of mag-
nitude speedups over Newton’s method. Building on this idea,
Bousziz et al. [BML*14] formulate Projective Dynamics (PD), ex-
tending the local-global framework to a broader range of prob-
lems, including elastic bodies, clothes, UV mapping, etc. Narain
et al. [NOB16] prove that PD can theoretically be viewed as
a special case of the Alternating Direction Method of Multipli-
ers (ADMM), and extend it to handle more nonlinear materials.
Liu ez al. [LBK17] alternatively interpret PD as a quasi-Newton
method, and introduce L-BFGS to simulate general materials.
Brandt er al. [BEH18] combines PD with scalable sparse subspace
bases, achieving real-time performance for large scale elastic ani-
mations. Brown et al. [BN21] observe that PD’s performances de-
grades significantly in quasi-static problems with large rotations,
and propose rotation-free nonlinear local variables as a remedy.
More recently, Hsu et al. [HTYW22] adopt the local-global frame-
work for sage-free initialization in general elastic simulations. Un-
like iterative solvers such as ours, their method performs only a
single global step and followed by a local step, producing approxi-
mate per-element rest shapes rather than a true global rest shape, as
detailed in Sec. 4.1.5.

3. Method

For an elastic object discretized with a linear tetrahedral mesh
(V,E), given its static equilibrium configuration x € R3V!, consti-
tutive model W(-), and external forces f., € RV, our objective
is to recover the undeformed rest shape X € R3VI Starting from
an initial guess X 0 the algorithm iteratively performs three stages
until the rest shape X k converges:

1. Force Stage: compute the Cauchy stress field from X k and up-

date it to 6™ such that equilibrium with the external force f..
is satisfied.

2. Stress Stage: compute the local deformation of each tetrahedron
according to its constitutive model ¥(-) to obtain the desired
stress tensor 6. This stage is executed in parallel.

3. Geometry Stage: update the global configuration from X to
X**1 based on the computed local deformations.

The pipeline is illustrated in Fig. 4 with its pseudo code in Alg. 1.
Note that by introducing multiple stages, our method does not opti-
mize a consistent global energy. We will explain each stage in detail
in the following sections.

3.1. Force Stage

Given the rest shape X* from the previous iteration and the static
shape x, we compute the deformation gradient F. € R3*3 for each
element e € E, along with the Cauchy stress tensor 6, € R3*3 de-
fined as [SB12]:

1 T 1 o _ T

6.=—P.F, =
‘T Je ¢ 7 |detF,| oF, ¢’

3

where P, = aa%’ is the first Piola-Kirchhoff stress tensor of element
e. The Cauchy stress describes the stress state in the deformed con-
figuration and is used to compute the elastic forces on vertices:

f=Bo, @)

where { € Rl is the vector of elastic forces on all vertices,
6 € Rl is the vectorized form of the Cauchy stress tensors over
all elements, and B € R3IVIXIEL s a linear mapping matrix that
depends solely on the deformed shape x. For the precise definition
of B, please refer to the Appendix. Since the rest shape is fixed, B
remains constant throughout the optimization.

Because the tetrahedral mesh typically contains more elements
than vertices, Eq. 2 forms an underdetermined system for G.
The force stage adjust the stress o* (from X¥) to satisfy equilib-
rium with external forces, leading to the following weighted least-
squares problem:

min||6* — 6*||k s.0. B6" + f., =0, &)

RIIEIXIIE|

where K € is a diagonal weighting matrix with K, = vgl
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Algorithm 1 Inverse Shape Design

Require: static shape x, external force f,,, constitutive model ¥
Ensure: rest shape X

1: Assemble B and factorize BK !B in Eq. (6)

2 X% x

3: repeat

4: > Force stage <
5: o+ o(x,Xx"

6: 6" « solve Eq. (13)
7 > Stress stage N
8 > in parallel
9

for e € E do
: U;,D; < SVD(o3})
10: ¥, + solve Eq. (9)
11: Sk« UrZ, (U T

12: > Geometry stage

13: XM solve Eq. (12)
14: until | X! —xK)| <e

15: return X<+

for each element, and v is the volume of element e in the static con-
figuration. The constraint in Eq. 5 is the force balancing condition
in static shape, the minimization means the updated 6™ should stay
close to the previous of, and K is intuitively chosen for measur-
ing the volume-integrated differences of stress fields. Mathemati-
cally, this formulation projects 6" onto the affine manifold of force-
balanced stresses.

The optimization problem in Eq. 5 is a standard quadratic pro-
gramming problem with only equality constraints, which has a
closed form solution:

o —c"—K'BT (BK_'BT>71 <fext+Bck> )

The main computational cost lies in solving the linear system with
matrix A = BK™!'BT. Fortunately, since B and K are constant
and A is positive semi-definite, its Cholesky factorization can be
precomputed, greatly accelerating the evaluation of Eq. 6. To en-
force stress symmetry(Newton’s third law), each G, is parameter-
ized by its six unique components (diagonal and upper-triangular
part), with B and K modified accordingly. This reduces the dimen-
sion of A from 9|E| to 6|E|, resulting in a performance gain. For
more details, please refer to the Appendix.

3.2. Stress Stage

The stress stage recovers element-wise deformation gradients F,
that reproduce the target stresses 6, from the force stage. Since ele-
ments are independent, this computation is naturally parallelizable.
For notational simplicity, we omit the subscript e for all quantities
in this section.

For isotropic materials, the constitutive model is rotational-
invariant:

P(F) = ¥(FR) = ¥(Z), %

where R is a rotation and F = ULV ! is the singular value decom-
position of F. The first Piola—Kirchhoff stress P is P = U%—\)I:’VT,

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

leading to the following expression for the Cauchy stress:

1 T 10¥ . T
6=-PF =U--—XU 8
J oY ®
where J = detF = detX. This equation can be interpreted as
the eigen decomposition of G, whose eigenvalues are given by
}%—\){:’E. With the target stress 6* and its eigen decomposition 6* =
U*D*(U*) " provided, we solve for £ via:

- —=X=D" 9

For certain constitutive models like the one used in [HWP*23],
this equation has a closed-form solution. But for general materi-
als, we have to numerically solve it. We employ the Powell’s hy-
brid method from the MINPACK [MSHGS84] library to solve this
equation, which requires only the residual and gradient of Eq. 9.
This allows our method to support any analytical constitutive mod-
els expressed in terms of singular values of F, including Neo-
Hookean [SGK18], StVK [SB12], as well as more complex ma-
terials like spline-based [XSZB15] or even neural-network-based
materials [MCD™23], so long as the first Piola stress tensor and its
gradient can be numerically evaluated. If a valid solution to Eq. 9
can’t be found, we assign the identity matrix to X, though such
cases are rare in practice. Strain limiting is enforced by imposing
box constraints on X, thereby preventing unphysical element inver-
sion or excessive stretching.

Once X and U* are obtained, V remains undetermined. Rewrit-
ing,

F=UTV = [U*):(U*)T] [U*VT] —S*R,  (10)

where $* = U*E(U*) " is known, and R is an arbitrary rotation.
This reveals that only the symmetric part of F’s polar decomposi-
tion is determined at this stage, while the rotational part is left free.
This reflects the fact that rigid rotations of the rest configuration
do not affect stresses or forces in the deformed state. The specific
rotation R will be resolved in the subsequent geometry stage based
on additional constraints.

3.3. Geometry Stage

From the stress stage, we obtain the local symmetric deforma-
tion S} independently for each element. These local deformations
should be "stuck" together, with individual rotations, to get a global
deformation. The geometry stage then seeks a global rest shape
X**1 consistent with these local deformations. We formulate this
as a pure geometry optimization problem. Instead of tracking the
deformation gradient from the rest shape to the deformed configu-
ration F = aa—;., we consider the inverse mapping N = %—’; With po-
lar decomposition N. = R.S., we enforce consistency by matching
Se with (S})~!. Following [TKL22], we formulate the objective in
mixed variational form:

v e e -1z 2T
W(X,SJ»)—; Se = (Se) I = Ae e ve, an
ce(X,S) =Polar(Ne(X)) — Se.



6 of 12 L. Ruan & B. Wang & T. Liu & B. Chen / STAGED

Y | 1e5 | 2e5 | 5e5| 75 | 1e6

0.2 \

0.4

0.45

v

iy AVY oV &
— et o £ £ L.

Figure 5: Ablation study of relaxation (Sec. 3.4). Bar model with
left end fixed under gravity (gray). Our algorithm recovers its rest
shape (blue) across varying Young’s modulus Y and Poisson’s ra-
tios V. The table reports the convergence result without relaxation:
green (success) and red (failure). Our solver struggles to converge
when v > 0.4 due to numerical instability. Once relaxation is added
back, our solver becomes robust across all tested parameters. The
bottom figure shows the converging sequence when v = 0.4, the
first row (without relaxation) fails to converge, while the second
row (with relaxation) converges successfully.

Here S is treated as an independent variable and A as a Lagrangian
multiplier. The optimization problem is then:

i W(X,S,A). 12
RSy "

This formulation implicitly incorporates rotations through the con-
straint term, enabling efficient handling of local rigid motions. Us-
ing sequential quadratic programming (SQP) with Schur comple-
ment reduction, the problem simplifies to solving linear systems in
terms of X along, with S and A eliminated. Since Eq. 11 matches
the formulation of [TKL22], we refer the readers to that work for
numerical details.

3.4. Relaxation

Although each stage is well-formulated, the algorithm may fail to
converge in certain scenarios. The main reason is that we do not
have a consistent global energy to optimize, each stage only solves
a subset of unknown parameters. As illustrated in Fig. 5, when fix-
ing the left end of a horizontal bar and computing its gravity-free
rest shape, convergency fails for Poisson’s ratios > 0.4. For in-
stance, at v = 0.4, the bar exhibits oscillatory behavior followed
by divergence, indicative of overshooting during iterative updates.
This instability parallels well-known issues in nonlinear forward
simulations, where overly aggressive descent steps inject spurious
energy into the system, leading to numerical blow-up. A standard
stabilization technique in nonlinear solvers is step-size control via

107t
—— omega = 1.0
——— omega = 0.7
—— omega = 0.5
—— omega = 0.3
omega = 0.2
s 1072
5]
c
i)
£
o
o
1073
0 4 8 12 16

iterations

Figure 6: Convergence behavior with different relaxation parame-
ters M in the bar example(Fig. 5). Smaller ® leads to smoother but
slower convergence. We adopt ® = 0.3 to balance robustness and

efficiency.

relaxation (or damping), which mitigate overshooting by scaling
updates. We apply relaxation to 6 in Eq. 6 as:

-1
o' =c—oK 'B' (BK“BT) (fext+Bok). (13)

with @ € (0,1] the relaxation parameter. Unlike forward simula-
tion, where ® can be adaptively selected via line search, inverse
shape design lacks a variational objective that permits such adjust-
ment. We therefore determine ® empirically. As shown in Fig. 6,
decreasing ® suppresses oscillations, while excessively small val-
ues overdamp progress. In all experiments, we fix @ = 0.3, which
consistently achieves stable convergence with negligible efficiency
loss across all tested scenarios.

4. Results

In this section, we show validation tests and applications of
our method. We implement our algorithm using C++ with
Eigen [GJ*10] and MKL [Int24] library to accelerate linear alge-
bra computation. We use OpenMP [DMO8] to parallelize the stress
stage and the linear system assembly in the geometry stage. We use
pybind11 [J*24] to create python frontend, and Taichi [HLA* 19] Ii-
brary for GUI. All experiments, including comparison with [Jia21]
are performed on an AMD Ryzen 9 7950X 16-Core Processor.
For all examples, we use density p = 102kg/m3 and gravity g =
9.8m/ s. The specific configuration for each example is listed in
Tab. 1. Without special statement, we use RMS displacement error
below & = 1072 in line 14 of Alg. 1 as our stop criteria. All the
models in the experiments are normalized to around 1m size.

4.1. Validation
4.1.1. Correctness

We validate the correctness of our method by forward simulation.
Starting from an initial shape A, we first run a forward simulation

© 2026 Eurographics - The European Association
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Table 1: Simulation parameters for each example. |V

>

7of 12

E|: are the number of mesh vertices and elements. SNH: stable Neo-

Hookean [SGK18]. NH: Neo-Hookean [Jia21]. Coro: corotational material model [SB12]. Spline: spline-based material model [XSZB15].

Time: total optimization time include precomputation.

Example \4 |E| Material Young’s modulus (Pa) | Poisson’s ratio | Time(s)
octopus (Fig. 7) 40k 112k NH le5 0.45 5.1
bar (Fig. 5) 0.6k 2k SNH le5-1e6 0.1-0.45 0.2-0.3
cactus (Fig. 3) 5k 24k SNH 6e4 0.45 1.4
armadillo (Fig. 8) 4k-77k 15k-340k NH 4e5 0.45 1.4-50.1
plant (Fig. 11) 10k 33k SNH/Coro/StVK/Spline le6 0.1-0.45 1.5-1.8
eagle (Fig. 1) 16k 57k SNH 5eS 0.45 2.6
rose (Fig. 1) 39k (24k fixed) 149k SNH 1e8 0.45 3.5

Time

37.7%

= Precompute
= Force Stage

= Stress Stage
Geometry Stage

43.2%

3.9% 15.2%

Figure 7: Time breakdown for the octopus example(Fig. 2). The ge-
ometry stage dominates the runtime, followed by precomputation.

to reach an equilibrium state B. Then we run our algorithm from B
to get the corresponding rest shape C using the same material. The
same initial shape A might converge to different equilibrium state B
due to different initial perturbations, which further complicates this
problem. As shown in Fig. 3, the cactus model can bend to different
directions (first three rows) under the same gravity. In the last row
of Fig. 3, we also show a case loaded with a centrifugal force, which
points radially outward from the y-axis with length proportional to
the distance from the y-axis, acting on the cactus model. For all
cases, our method can converge to the same rest shape C, which is
indistinct to the ground truth shape A, showing the correctness and
robustness of our method.

4.1.2. Efficiency

A detailed time breakdown of the octopus example(Fig. 2) is pre-
sented in Fig. 7. In the precomputation phase, the mesh is loaded,
B is assembled and BK " 'B T in Eq. 13 is prefactorized. Since the
Hessian matrix of the SQP problem in Eq. 11 shares the same spar-
sity pattern as BK 'B', we pre-assemble a sparse Hessian for
Eq. 11 and setup a mapping table linking vertex pairs to corre-
sponding entries in the Hessian. This mapping facilitates efficient
parallel Hessian assembly during runtime. In the multi-stage iter-
ative process, both the force stage(benefiting from a closed-form
solution) and the stress stage(executed in parallel) contribute only
marginally to the total computation time. The majority of the time
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is spent in the geometry stage, which involves optimizing the non-
linear energy in Eq. 11.

It is worth noting that Eq. 11 is not the only possible formulation.
An alternative is the PD-like energy minimization defined as:

minWpp(X) = n}(ingnﬁiyn%HNe(X) —R(S}) 7 Pve, (14

where R, is the local rotation of each element. Despite its con-
ceptual simplicity, we demonstrate experimentally that our cho-
sen formulation(Eq. 11) is more computationally efficient. As
shown in Fig. 9, our solver converges significantly faster than both
the standard projective dynamics (PD) [BML"14] and L-BFGS
solver [LBK17] applied to this alternative PD-like energy in Eq. 14.

4.1.3. Convergence

We study the convergence behavior of our method in comparison
with SANM [Jia21]. SANM is an optimized open-source imple-
mentation of symbolic asymptotic numerical solver, which con-
verges orders of magnitude faster than Newton-type solvers such as
the Levenberg-Marquardt solver for the inverse shape design prob-
lem [CZXZ14,Jia21]. Therefore, we choose SANM as our baseline.
For the octopus model with 40k vertices and 112k elements, we ob-
tain its ground truth gravity-free rest shape Xg¢ by running SANM
until the force residual satisfies || f + f oy ||rars < 10712, Ateach it-
eration, we compute both the position error || X* — X o(|| gys and the
force residual for our method and SANM, and present the result in
Fig. 2. Our method efficiently reduces the position error within the
first few iterations, while SANM struggles to make progress early
on. Interestingly, we observe that the force residual for our method
initially increases, even as the position error decreases. This phe-
nomenon highlights the ill-conditioned nature of the inverse shape
design problem and further supports our motivation to decouple
material nonlinearity from geometry optimization.

4.1.4. Scaling Test

We conduct a scaling test to evaluate the efficiency of our
method against the state-of-the-art multi-thread asymptotic solver
SANM [Jia21]. As shown in Fig. 8, we use the armadillo model
with different mesh resolution. In each case, the same bottom part
of the model was fixed, and the task is to compute its gravity-free
rest shape. We measured both the total solver time (including pre-
computation) and memory usage. For fairness, we employ the RMS
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Figure 8: Scalability of time and memory costs compared with
SANM [Jia21]. Our method demonstrates near-linear scalability in
both metric, while SANM incurs significantly higher cost on high
resolution meshes.

force residual used in SANM as the stop criterion for both methods,
and set the threshold to 10™* as a practically low value.

Our method demonstrates near-linear scalability in both time and
memory, while SANM requires substantially more time to process
high resolution meshes. For the largest system, consisting of 77k
vertices and 340k elements, our algorithm converges in only 50.1
seconds(including precomputation), compared to 301 seconds for
SANM, yielding a 6x speedup. Moreover, our algorithm also ex-
hibits a lower memory footprint than SANM in all cases.

4.1.5. Comparison to Two-stage Initialization [HTY W22]

As explained in Sec. 2.3, our method draws inspiration from the
two-stage initialization method [HTYW22]. The two-stage initial-
ization method aims to remove sagging artifact without acquiring
a global rest shape. It operates in two parts: a global linear opti-
mization solves a linear problem to enforce static equilibrium un-
der the external loads, followed by local nonlinear corrections to
compute each tetrahedron’s local rest shape, i.e., the D;,;, matrix in
F=DD,, ! for each tetrahedron. To obtain an approximate global
rest shape X, additional forward simulation from the static shape x
under zero external forces is required. Note that X is only an ap-
proximation of the true rest shape X, as internal elastic forces still
exist. This highlights the key difference between our method and
two-stage initialization: our method iteratively converges to the true
rest shape X, whereas the two-stage method can only produce an

0.10
to.14
0.08 4 F0.12
N w L0.10
£ 0.06 1 3
() Q
o L0.08 ¢
] S
'3 0.04 L 0.06 &
o o
Lo.04
0.02 1
H0.02
0.00 A t0.00

0 1 2 3 4 5 00 02 04 06 08 1.0
time (seconds) time (seconds)

—— Mixed(Ours) —— L-BFGS — PD

Figure 9: Comparison of different solvers in the geometry stage.
Mixed(ours): mixed variational formulation (Eq. 11). L-BFGS:
L-BFGS solver [LBKI17] for Eq. 14. PD: projective dynamics
solver [BML* 14] for Eq. 14. Our mixed solver achieves the fastest
convergence.

(a) Rest Shape (b) Static Shape (Ours) (c) Static Shape (Two-stage)

Figure 10: Comparison with two-stage initialization [HTYW22].
The static shape of a hanging bar model with its left end
fixed is given. (a) Our method (blue) and two-stage initializa-
tion [HTYW22] (yellow) produce different rest shapes. (b) With
the rest shape from our method, the simulated static shape (blue)
matches the input shape (gray). (c) With the rest shape from the
two-stage initialization (yellow), the simulated static shape does
not match the input shape (gray).

approximation, as demonstrated by the bar example in Fig. 10. Our
improvement is enabled by three innovations: the relaxed projec-
tion formulation for updating 6 in Eq. 13, the rotation analysis of
deformation gradient in Sec. 3.2, and the introduction of the geom-
etry stage in Sec. 3.3.

4.2. Application
4.2.1. Various Materials

Our method supports a wide range of isotropic material mod-
els. To evaluate this, we performed reconstructions from the same
input static shape and under identical external force conditions,
while varying only the constitutive model including stable Neo-

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 11: Rest shape recovery of the plant model (gray: static
shape) under different constitutive models (SNH, Coro, StVK,
spline-based; see Tab. 1. Numbers indicate the Poisson’s ratio.)

Hookean (SNH) [SGK18], StVK [SB12], and Corotational material
(Coro) [SB12] and the Poisson’s ratio (from 0.1 to 0.45). As shown
in Fig. 11, the resulting rest shape remains nearly identical across
different materials with the same stiffness but significantly different
Poisson’s ratios. This demonstrates that the reconstruction is domi-
nated primarily by the material’s stiffness(Young’s modulus), with
minimal influence from the specific constitutive model or Poisson’s
ratio.

We further demonstrate the applicability of our method using a
spline-based material model [XSZB15], with corresponding result
shown in Fig. 11. Xu et al. [XSZB15] proposed a general formu-
lation for isotropic material defined by three scaler functions f, g,
and /:

¥(ho, M, h2) = f(Mo) + f(M) + f(A2)
+g(hok1) + (o) +8(A1A2) 15)
+ h(AoAiA2),

where A; denote the singular values of the deformation gradi-
ent F. In this formulation, each scalar function is defined by a
spline curve, which reduces the complexity of the nonlinear ma-
terial space to intuitive scale strain-stress relationships and greatly
simplifying the material design process. Owing to our physics-
geometry decoupled multi-stage strategy, the spline functions can
be directly incorporated into the stress stage without requiring mod-
ifications to the other two stages. As illustrated in Fig. 11, we show
the result using a spline-based material designed to emulate Neo-
Hookean material behavior. For further details regarding spline def-
inition and implementation, we refer readers to the original pa-
per [XSZB15]. It should be noted that the SANM [Jia21] solver
cannot accommodate such spline-based material, as it relies on an

© 2026 Eurographics - The European Association
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Figure 12: Interactive editing interface. Users can adjust material
splines, modify the direction and magnitude of external forces, and
instantly preview the updated rest shape from the viewer.

analytical expansion of the constitutive model, a requirement that
spline-based functions do not meet.

4.2.2. Interactive Editing

As a design tool, our method benefits from the multi-stage itera-
tive strategy to enable efficient editing of material properties and
external forces. The graphical interface(Fig. 12) allows users to ad-
just parameters, such as material splines or force conditions, and
see the resulting rest shape update immediately. This interactivity
is made possible by the core speed of our algorithm, which is fur-
ther enhanced by a warm-start initialization from previous solu-
tions. Although our algorithm also supports interactive editing of
the static shape in theory, this functionality is more limited. Any
change to the static shape requires the recomputation of the ma-
trix B and the subsequent re-factorization of BK 'B in Eq. 13
as these matrices are static shape dependent. This additional step
incurs a computational cost, hindering real-time performance.

4.2.3. Reconstruction from Image

Recently advances in the deep learning community have enabled
the reconstruction of 3D models from a single image [XLX"24,
LZL*25]. However, such reconstructions often overlook the fact
that elastic objects deform under gravity. Our method can serve
as an efficient post processing step to recover their undeformed
shapes, which can then be used to create virtual twins of the
real world objects. As shown in Fig. 1, we use Hunyuan3D
2.5 [LZL*25] to reconstruct a 3D mesh from a single image, tetra-
hedralize the mesh using Houdini [Sid23], and finally apply our
algorithm to obtain its rest shape. In this example, we manually
set the Young’s modulus and Poisson’s ratio of the material for
demonstration purposes. These parameters can alternatively be ob-
tained through real world measurement or estimated using visual-
language foundation models such as GPT-40 [Ope25].

5. Conclusion & Limitation

In this work, we present a three-stage inverse shape design frame-
work that efficiently decouples material nonlinearity from geome-
try optimization through the introduction of stress tensor variables.
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Figure 13: Failure case. When the Young’s modulus decreases from
107 t0 10, our method still produces numerically valid rest shapes
(the force residual in Eq. 1 can be sufficiently low). However, when
the Young’s modulus further decreases to 10° where no feasible
rest-shape configuration exists, the resulting rest shape no longer
follows the intended standing trend observed in the 10° and 107
cases. Instead, it collapses into a curled configuration, and the for-
ward simulation result deviates significantly from the target shape
although with its force residual converged.

Our method achieves over a 3x speedup compared to previous
methods [Jia21] on a model with 40k vertices and 112k elements,
while supporting a wider range of materials, including user-defined
spline-based materials, and enabling interactive editing of external
forces and material properties. The decoupled formulation further
allows parallel stress updates and geometry optimization, ensur-
ing near-linear scalability to large meshes. Our experiments vali-
date the physical correctness of the method and demonstrate appli-
cations in fabrication-oriented design and 3D reconstruction from
images. Several future directions are worthy of exploration. First,
the decoupling of stress and geometry also suggests opportunities
for efficient joint material-shape optimization, as in [WWY*15],
which is a critical step toward reconstructing physics-plausible
twins of real-world objects. Second, currently we don’t have col-
lisions and frictions in our implementation, but in theory the same
technique from [HTYW22] can be applied in our force stage to sup-
port frictional contacts. Last but not least, the K matrix in Eq. 5 is
intuitively chosen for simplicity, whose impact on the convergence
is not studied. A more rigorous analysis of the choice of K could
potentially speed up convergence.

Our framework also has several limitations. First, it lacks a
rigorous theoretical proof of convergence for the stress-geometry
splitting strategy. We cannot guarantee Eq. 1 always has a solu-
tion. Second, even there is a solution, our method does not al-
ways converge to that solution. Although our experiments show

L. Ruan & B. Wang & T. Liu & B. Chen/ STAGED

that the relaxation mechanism can robustly improve convergence
stability ( with ® = 0.3 ensuing convergency across all test cases),
the relaxation parameter ® in Eq. 13 is still manually chosen and
there is no theoretical guarantee of robustness under all condi-
tions. Third, our method still struggles in certain extreme cases.
As shown in Fig. 13, when the Young’s modulus of the plant model
is reduced to 10° , the material becomes too soft that no reason-
able rest shape can achieve the target shape under loading. In this
case, our method converges to a nominal valid solution (with the
force residual converged). However, the resulting rest shape does
not continue the expected trend observed in the 10° and 10’ cases,
it collapses into a curled configuration, and the forward simula-
tion produces a "sagging" static shape that deviates from the in-
put "standing" shape. When the Young’s modulus is further re-
duced to led, our algorithm fails to converge to any rest shape.
This observation is partly due to the fact that the input shape,
although force-balancing, is not a stationary static configuration.
For comparison, SANM [Jia21] gives the same

result as our method for Young’s modulus 107,

10° and 10° , and even finds an extremely ill-

conditioned solution for the 10* case (force b/

residual below 10712, shown on the right), W;
but eventually fails for Young’s modulus 10°.

Though SANM outperforms ours method in

the 10* case, such unphysical scenario never exists in reality. A
more comprehensive theoretical analysis of such ill-posed cases is
an important direction for future work. Finally, our method cur-
rently supports only isotropic materials. Extending it to anisotropic
materials, which are rotation-dependent, presents a significant chal-
lenge to core idea of stress-geometry splitting.

Appendix A: Force Stage Details

In this appendix we give a detailed deduction of Eq. 4. Following
[SB12], for a single tetrahedron, we can compute the deformation
gradient F as:
F=DD,',
D = (xl—x4 X2 — X4 x3—x4)7 (A-l)
Dy = (X] Xy Xo0—-X4 X3 7X4) .

Then the relation of forces on each vertices and the first Piola-
Kirchhoff P can be written as:

(f17.f27f3) = _PD};Tva
fo=—f1—Ffr—F3

where V;;, = det(Dy,) is the rest volume of the tetrahedron. Apply-
ing Eq. 3, we have:

(A.2)

-T
(flaf27f3) =—-PD,, Vu
=—JoF~ 'D;, "V, (A.3)
= —GDS_TVS.
Here we also use the relation J = % where Vi = det(Dy) is the
deformed volume of the tetrahedron. Defining a new matrix G €

© 2026 Eurographics - The European Association
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R**3, we can write Eq. A.3 in a more compact form:

f=(fi fr f3 fi)=-VeG' eR”
_ D;! 4x3 (A4)
G_(—<1,1,1>TD;1>€]R '

With the Kronecker product ®, we can compute the vectorized
vee(f) € R'? as:

vec(f) = fvec(VSGGT) =—-Vs(G®1L3) - vec(o), (A.S)

in which Iy € R>*3 is the identity matrix. From Eq. A.5, we can
see vec(f) and vec(o) have a linear relation, and the coefficient
—Vs(G ®1I3) € R'?*? depends only on the deformed shape. As-
sembling — V(G ® I3) for all tetrahedrons, we can get Eq. 4.

According to the Cauchy’s fundamental lemma, the Cauchy
stress tensor must be a symmetric tensor, which gives:

S0 S3  S4
=153 S1 95|, VeC(O') =Ts. (A.6)
S4 S48

Here s € R is the 6 independent DoF, T € R s the selection
matrix. Combine Eq. A.5 and Eq. A.6, we ends up with the rela-
tion of f to s, and Eq. 5 becomes the optimization for s accord-

ingly.
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